M2D4: Evaluate protein structures

- Quiz
- Prelab discussion

- Examine structure of pfFKBP35 and FKBP12
- Examine structures of small molecules

Homework

Data Figure and Results

Create a data figure for the SDS-PAGE gel and write the accompanying results section

Data for each group is linked on Class Data page

<u>Figure</u>

- Format / label the gel image
- Write a figure title and caption

Results text

- Write a results section corresponding to the data (in paragraphs!)
 - Explain all data shown
 - DO NOT include interpretation of data (this will be done in the discussion section)

Lab work

Assess structure of protein targets and small molecules

Mod2 overview

Research goal: Test small molecules for binding to the *Plasmodium falciparum* FKBP35 protein using a functional assay.

Review of Mod2 concepts

• What is the overall problem we are concerned with in Mod2?

• What is the protein target we purified for examination?

• What is the human homolog of this protein target, and why is its presence problematic for our long-term goal?

• What type of potential drugs are we testing in our assay?

What are small molecules and why are we using them?

- Small molecules
 - Mw < 500 Da
 - Natural or synthetic
 - Frequently comprised of Carbon/Nitrogen/Oxygen

Why Small molecules?

- Can design molecules to fit with target protein surface features
- Membrane permeable
- Orally bioavailable

Our small molecule library is based on FK506

known binder

Structural assessment of target and ligand interactions

 Structural assessment of protein targets and putative binders are key to development of novel therapeutics

Allows us to:

- Create 3D rendering of macromolecules like proteins
- Compare sequences, motifs, and folding of protein targets
- Can dock putative ligands and assess molecular interactions

Resources for computational assessment of proteins

- Online databases
 - Uniprot: collects known information about protein sequence, function, homology with other proteins
 - Protein Data Bank: collection of structural information about proteins
- Pymol
 - Python-based program that uses molecular information embedded in PDB files to combine sequence and 3D rendering information for proteins
 - Allows multiple forms of visualization
 - Compare proteins and dock putative ligands

Assessment of small molecule structure

- Chemdraw
 - Allows conversion from chemical sequence into structural rendering to easily compare shapes and functional groups across multiple small molecules

For today...

- Align and compare FKBP35 and FKBP12 to identify key places of overlap
- Examine chemical structures and identify key shared and unique features between small molecules to be tested
- Use this information to build a picture about predicted binders to FKBP12 vs FKBP35