All pages

Jump to: navigation, search
All pages
 
All pages | Previous page (20.109(S14): Cell engineering mini-report) | Next page (Optical Microscopy Part 3: Resolution, Stability, and Particle Tracking)
20.109(S22):Spring 2022 schedule20.109(S23):Assignments20.109(S23):Class data
20.109(S23):Communication20.109(S23):Data Summary20.109(S23):FYI
20.109(S23):Homework20.109(S23):Journal article presentation20.109(S23):Laboratory tour
20.109(S23):M1D120.109(S23):M1D220.109(S23):M1D3
20.109(S23):M1D420.109(S23):M1D520.109(S23):M1D6
20.109(S23):M1D720.109(S23):M1D820.109(S23):M2D1
20.109(S23):M2D220.109(S23):M2D320.109(S23):M2D4
20.109(S23):M2D520.109(S23):M2D620.109(S23):M2D7
20.109(S23):M2D820.109(S23):M3D120.109(S23):M3D2
20.109(S23):M3D320.109(S23):M3D420.109(S23):Module 1
20.109(S23):Module 220.109(S23):Module 320.109(S23):Research article
20.109(S23):Research proposal presentation20.109(S23):Research talk20.109(S23):Spring 2023 schedule
20.109(S24):Assignments20.109(S24):Class data20.109(S24):Communication
20.109(S24):Data Summary20.109(S24):FYI20.109(S24):Guidelines for working in the tissue culture facility
20.109(S24):Homework20.109(S24):Journal article presentation20.109(S24):Laboratory tour
20.109(S24):M1D120.109(S24):M1D220.109(S24):M1D3
20.109(S24):M1D420.109(S24):M1D520.109(S24):M1D6
20.109(S24):M1D720.109(S24):M1D820.109(S24):M2D1
20.109(S24):M2D220.109(S24):M2D320.109(S24):M2D4
20.109(S24):M2D520.109(S24):M2D620.109(S24):M2D7
20.109(S24):M2D820.109(S24):M3D120.109(S24):M3D2
20.109(S24):M3D320.109(S24):M3D420.109(S24):Module 1
20.109(S24):Module 220.109(S24):Module 320.109(S24):Research article
20.109(S24):Research proposal presentation20.109(S24):Research talk20.109(S24):Spring 2024 schedule
20.109:Lab basics20.109:Module 120.109:Module 2
20.109:Module 320.109:Module 420.109:OWW basics
20.109:People20.109: Spring 2007 schedule20.109 (F07): Phage by design
20.109 (S07): Atomic force microscopy20.109 (S07): Transmission electron microscopy20.109 Main Page
20.309:Course Information20.309:DAQ System20.309:Lab Report Guidelines
20.309:Learning outcomes20.309:Safety20.309: Exam 1 Topics
20.309 Assignment 1: Optics bootcamp20.309 Main Page20.309 development to-do list
20.345:Course Information20.345:Final project proposal20.345:Key Factors Table
20.345:Literature search20.345:Main page20.345: Wiki guidelines
A.Williams: Objectives and Literature ReviewANOID Project
Additional ResourcesAligning the optical trapAlumni Page
Aperture and field stopsAssignment 1, Part 1: Pre-lab questionsAssignment 1, Part 2: Optics bootcamp
Assignment 1, Part 3: Building your transillumination microscope
Assignment 1, Part 4: Measuring magnification and bead sizeAssignment 10, Part 1: Measuring the osmotic shock response of yeastAssignment 10 Overview
Assignment 11: Tell us about your lab visit
Assignment 1 Overview: Transillumination microscopyAssignment 2: epi illuminator for fluorescence microscopyAssignment 2: fluorescence microscopy
Assignment 2 Part 1: Noise in imagesAssignment 2 Part 2: Fluorescence microscopyAssignment 2 Part 3: Build an epi-illuminator for your microscope
Assignment 2 Part 4: Fluorescent imaging of actinAssignment 3, Part 1: visualizing actin with fluorescence contrastAssignment 3, Part 2: experimental design with fluorescence
Assignment 3 Overview
Assignment 4: finding and measuring thingsAssignment 4 part 1: Make a fake imageAssignment 4 part 2: Measure resolution
Assignment 4 part 3: Track microspheres over timeAssignment 5, Part 1: MSD difference tracking and microscope stabilityAssignment 5, Part 1: viscosity and diffusivity in glycerol-water mixtures
Assignment 5, Part 2: live cell particle tracking of endocytosed beadsAssignment 5: Spring 2020
Assignment 5 OverviewAssignment 6, Part 1: Pre-lab questions
Assignment 6, Part 1: build a two-color microscopeAssignment 6, Part 2: Electronics bootcampAssignment 6, Part 2: electronics written problems
Assignment 6, Part 3: Identifying unknown filter circuitsAssignment 6 OverviewAssignment 6 Overview: two color microscope
Assignment 7, Part 1: op amp golden rules questionsAssignment 7, Part 2: measure temperature and fluorescenceAssignment 7, Part 3: testing your instrument and measuring a DNA melting curve
Assignment 7: Amplifiers and feedbackAssignment 7 OverviewAssignment 8, Part 0: convolution practice
Assignment 8, Part 1: convolutionAssignment 8, Part 2: build a two-color microscope
Assignment 8, Part 2: fabricate a microfluidic deviceAssignment 8, Part 2: lock-in amplifier and temperature controlAssignment 8, Part 3: add flow control and test your device
Assignment 8 OverviewAssignment 8 Overview: flow channel & two-color microscopeAssignment 9, Part 1: Analyze two-color yeast images
Assignment 9, Part 1: model functionAssignment 9, Part 2: Simulating DNA melting data and testing the model functionAssignment 9, Part 3: Fitting your data
Assignment 9 OverviewAssignment 9 Overview: Analyzing yeast imagesBEECH(F23)
BEECH(F23):Build Communication ToolkitBEECH(F23):Build CommunityBEECH(F23):Build Knowledge
BEECH(F23):Build Your ProjectBEECH(F23):PeopleBEECH(F23): 2023-2024 schedule
BEECH Main PageBE Classroom Computer DocumentationBE TA Training(Su16):Homepage
BE TA Training (Su17)BE TA Training (Su18)BE TA Training (Su19)
Beam Expander ExampleBeechBode plots
Bode plots and frequency responseBryan Hernandez/20.109/Lab notebook/Module 1/Day 2Bryan Hernandez/20.109/Lab notebook/Module 1/Day 3
Bryan Hernandez/20.109/Lab notebook/Module 1/Day 4Bryan Hernandez/20.109/Lab notebook/Module 1/Day 5Bryan Hernandez/20.109/Lab notebook/Module 1/Day 6
Bryan Hernandez/20.109/Lab notebook/Module 2/Day 2CM March14CM March28
CRISPRi module, Part II: Increasing ethanol yield in E. coli MG1655Calculating MSD and Diffusion CoefficientsCapacitors and inductors
Cartridge ManipulationCell PrintingCell Printing Experimentation
Cell ReservationsCellular microrheologyComplex Number Review
Compound Microscope ExampleConfocal WikiConverting Gaussian fit to Rayleigh resolution
Course Journal -- Nathan S LachenmyerCourseworkCreating 20.109(S17):Scan slides to identify FKBP12 binders (Day5)
DAQ Ribbon CableDNA Melter Improvements
DNA Melting: DNA SequencesDNA Melting: Model function and parameter estimation by nonlinear regressionDNA Melting: Processing DNA Melting Data
DNA Melting: Simulating DNA Melting - BasicsDNA Melting: Simulating DNA Melting - Intermediate TopicsDNA Melting: Using the Basic DNAMelter GUI
DNA Melting: Using the LockIn DNAMelter GUIDNA Melting: Using the Matlab DNAMelter GUIDNA Melting II: Using the Matlab DNALockIn GUI
DNA Melting Part 1: Measuring Temperature and FluorescenceDNA Melting Part 2: Lock-in Amplifier and Temperature Control
DNA Melting Report RequirementsDNA Melting Report Requirements for Part 1
DNA Melting ThermodynamicsDNA melting: Identifying the unknown sample
DNA melting lab wiki pagesData SheetsDeconvolved Image
Develop Research proposal ideas and presentationsDevice CreationESTORM
Electronics Mini-Lab
Electronics boot camp I: passive circuits and transfer functionsElectronics boot camp lab part 1Electronics bootcamp II: feedback systems
Electronics primerElectronics written problemsElectronics written problems II
Emmanuel QuirozEquipment on loanError analysis
Estimating second order system parameters from noise power spectra using nonlinear regressionExam 2 study guideFPGA Design Environment
Fall 2010: DNA melting report outlineFall 2010: Problem Set 3
Fall 2010 SyllabusFall 2012: Journal Presentations
Final Project -- Nathan S LachenmyerFinal Project Proposal WilliamsFinal Projects
Finding and measuring thingsFlat-field correction
Geometrical OpticsGeometrical optics and ray tracingHattie Chung
Impedance AnalysisIn silico cloning of pdCas9 construct
Inkjet TechnologiesInput and output impedanceIntro Electronics Lab Report
IntroductionKey Project ElementsKey estimates
Lab 1 Report -- Nathan S LachenmyerLab 2 Report -- Nathan S Lachenmyer
Lab Manual:Introduction to electronics
Lab Manual:Optical Trapping
Lab Manual: Atomic Force Microscopy (AFM)Lab Manual: Limits of DetectionLab Manual: Measuring DNA Melting Curves
Lab Manual: Optical MicroscopyLab Manual: SLA 3D-Printed Microfluidic Device Master Mold
Lab orientationLaser cutter safe operating procedureLecture Notes:Modeling real systems with ideal elements
Limits of Detection:Report RequirementsLimits of Detection: Data Sessions
Locating objects in a fluorescent microscopic imageMATLAB: Estimating resolution from a PSF slide imageMATLAB: Estimating viscoelastic spectrum using Mason's method
MATLAB: Intensity-weighted centroid noise formulaMRI lab: FPGA controller documentationMSD of Sum and Difference Trajectories
Main PageManta G032 camera measurementsMarch14
Matlab:Division operatorsMatlab:Image Processing for Fluorescent MicroscopyMatlab:Matlab Fundamentals
Matlab: Scalebars
Matlab: Simulating Brownian motionMeasuring biological forces mini-labMeasuring optical magnification
MethodsMicroscope Objective Lenses
Microscopy report general guidelinesMicroscopy report outlineMore info on BJC2100 Attempt
Nonlinear regressionObjective
Optical Microscopy: Brownian motion and microscopy stability
Optical Microscopy: Part 1 Report OutlineOptical Microscopy: Part 2 Report OutlineOptical Microscopy: Part 3 Report Outline
Optical Microscopy: Part 4 Report OutlineOptical Microscopy Data Sheets
Optical Microscopy Part 1: Brightfield Microscopy
Optical Microscopy Part 2: Fluorescence Microscopy