Difference between revisions of "Optical trap"

From Course Wiki
Jump to: navigation, search
(=Coarse adjust the beam expander)
(Introduction)
Line 13: Line 13:
  
 
===Overview of the instrument===
 
===Overview of the instrument===
 +
 +
==Summary of calibration methods==
 +
 +
<table>
 +
<tr>
 +
  <th scope="col">Method</th>
 +
  <th scope="col">Equation</th>
 +
  <th scope="col">Equation</th>
 +
  <th scope="col">Equation</th>
 +
</tr>
 +
<tr>
 +
 +
<tr>
 +
  <td>
 +
  <math>
 +
    \alpha = \frac{K_B T}{\langle R V_qpd \rangle ^ 2}
 +
  </math>
 +
  </td>
 +
</tr>
 +
 +
<tr>
 +
  <td>
 +
  <math>
 +
    \alpha = 2 \pi  \Beta f_0
 +
  </math>
 +
  </td>
 +
</tr>
 +
 +
<td>
 +
  <tr>
 +
  <math>
 +
    \alpha = \langle \frac{3 \pi \eta d v}{R V_qpd} \rangle
 +
  </math>
 +
  </tr>
 +
</td>
 +
 +
</table>
  
 
==Setup and alignment==
 
==Setup and alignment==

Revision as of 16:54, 1 August 2012

MIT Bioinstrumentation Teaching Lab

ImageBar 774.jpg

Laser tweezers based on the ThorLabs OTKB optical trap kit.

Introduction

Optical tweezers can exert measurable forces on micron-scale dielectric particles. This capability offers a unique and valuable tool for manipulating and measuring cell components at the single molecule level. For example, optical traps have been used extensively to investigate the mechanical properties of biological polymers and the force generation mechanisms of molecular motors. In many studies, optical tweezers apply force to functionalized microspheres, which act as convenient handles attached to molecules of interest.

To make quantitative force measurements, the instrument records the displacement of a trapped microsphere over time. For small displacements, the exerted force is very nearly proportional to displacement, so the trap can be modeled as a linear spring. Accurate force and position measurements depend on careful calibration of the position detector responsivity, G, and the trap stiffness α, also called the spring constant. The stiffness is a function of trapping laser power, bead size, bead composition, and optical properties of the sample.

This page has tips for setting up and aligning an optical trap. It discusses three methods for obtaining the spring constant and two methods for measuring α.

Overview of the instrument

Summary of calibration methods

$ \alpha = \langle \frac{3 \pi \eta d v}{R V_qpd} \rangle $
Method Equation Equation Equation
  $      \alpha = \frac{K_B T}{\langle R V_qpd \rangle ^ 2}     $
  $      \alpha = 2 \pi  \Beta f_0     $

Setup and alignment

Remove the optics

Collimating and adjusting the fiber port

Initial laser alignment

Beam expander coarse adjustment

Condenser adjustment

Connecting the piezo stage

Fine adjusting the beam expander

<html> <script type="text/javascript" src="http://html5.kaltura.org/js"></script> <script type="text/javascript">

 mw.setConfig('EmbedPlayer.AttributionButton',false);
 mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);

</script> <object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_tojxf237/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object>

</html>

OTKB software

Starting the software

<html> <script type="text/javascript" src="http://html5.kaltura.org/js"></script> <script type="text/javascript">

 mw.setConfig('EmbedPlayer.AttributionButton',false);
 mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);

</script> <object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_i5yndloo/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_i5yndloo/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object> </html>


Calibration

Measuring R by scanning a stuck bead

PSD method

Equipartition method

Stokes method

<html> <script type="text/javascript" src="http://html5.kaltura.org/js"></script> <script type="text/javascript">

 mw.setConfig('EmbedPlayer.AttributionButton',false);
 mw.setConfig('EmbedPlayer.EnableOptionsMenu',false);

</script> <object name="ttvplayer" id="ttvplayer" type="application/x-shockwave-flash" allowScriptAccess="always" allowNetworking="all" allowFullScreen="true" height="336" width="544" data="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_vzh3tc1f/"><param name="allowScriptAccess" value="always" /><param name="allowNetworking" value="all" /><param name="allowFullScreen" value="true" /><param name="bgcolor" value="#000000" /><param name="movie" value="http://www.kaltura.com/index.php/kwidget/wid/_203822/uiconf_id/1898102/entry_id/1_vzh3tc1f/"/><param name="flashVars" value="autoPlay=false&streamerType=rtmp"/><a href="http://ttv.mit.edu">MIT Tech TV</a></object> </html>