Difference between revisions of "Fall 2012: Journal Presentations"

From Course Wiki
Jump to: navigation, search
 
(21 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 +
[[Category:20.309]]
 +
[[Category:Presentations]]
 
{{Template:20.309}}
 
{{Template:20.309}}
 +
 
==Presentation guidelines==
 
==Presentation guidelines==
 
* The allotted time is 10 minutes plus 2-3 minutes Q&A
 
* The allotted time is 10 minutes plus 2-3 minutes Q&A
Line 12: Line 15:
 
   
 
   
 
===Grading===
 
===Grading===
Presentation grade is worth 10% of your total grade and is divided into the following categories:
+
Presentation grade is worth 8% of your total grade and is divided into the following categories:
  
 
* 10%: sign up for your paper by the deadline: 'Monday, Nov 19''.  To sign up, add both presenter's names after the link to the paper on this page.  
 
* 10%: sign up for your paper by the deadline: 'Monday, Nov 19''.  To sign up, add both presenter's names after the link to the paper on this page.  
 
** There are three presentation days (Dec 4, 6 and 7).  If you or your partner will be away on one of these days, indicate this by your name on the wiki page.
 
** There are three presentation days (Dec 4, 6 and 7).  If you or your partner will be away on one of these days, indicate this by your name on the wiki page.
* Uploading presentation file to Dropbox 6 hours before presentation session begins and ensuring that the file works.  This is important since there will not be time to do this during the session. (25%)
+
* 25%: Uploading presentation file to Stellar 6 hours before presentation session begins and ensuring that the file works.  This is important since there will not be time to do this during the session.
 
* 40%: Presentation – clarity, interpretation of paper, organization, adhering to the 10min time limit, ability to answer questions.
 
* 40%: Presentation – clarity, interpretation of paper, organization, adhering to the 10min time limit, ability to answer questions.
 
* 25%: Attendance at the other two sessions
 
* 25%: Attendance at the other two sessions
Line 27: Line 30:
 
*Love, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology 2006. [http://www.ncbi.nlm.nih.gov/pubmed/16699501 link] '''Sabina Sood & Shireen Rudina'''
 
*Love, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology 2006. [http://www.ncbi.nlm.nih.gov/pubmed/16699501 link] '''Sabina Sood & Shireen Rudina'''
 
*J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011. [http://www.sciencemag.org/content/333/6040/345.full link]
 
*J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011. [http://www.sciencemag.org/content/333/6040/345.full link]
*Gossett et al Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 2012. [http://www.pnas.org/content/109/20/7630.full.pdf+html link]
+
*Gossett et al Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 2012. [http://www.pnas.org/content/109/20/7630.full.pdf+html link] '''Katie Vogel & Hannah Johnsen'''
 
*Tyson et al Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods 2012. [http://www.ncbi.nlm.nih.gov/pubmed/22886092 link] '''Divya Chhabra, Mariana Duran'''
 
*Tyson et al Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods 2012. [http://www.ncbi.nlm.nih.gov/pubmed/22886092 link] '''Divya Chhabra, Mariana Duran'''
*Zhang et al. Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. PNAS 2012. [http://www.pnas.org/content/early/2012/10/25/1209893109.abstract link] '''Michael Hwang & Paul Muir'''
+
*Zhang et al. Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. PNAS 2012. [http://www.pnas.org/content/early/2012/10/25/1209893109.abstract link] '''Michael Hwang & Paul Muir''' ; '''Robin Yeo & Colin Beckwitt'''
  
 
===Biomolecular detection===
 
===Biomolecular detection===
 
*Shapiro et al. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation JACS 2012. [http://pubs.acs.org/doi/abs/10.1021/ja211788e link] '''Alexa Schulte'''
 
*Shapiro et al. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation JACS 2012. [http://pubs.acs.org/doi/abs/10.1021/ja211788e link] '''Alexa Schulte'''
 
*Dong and Sahin. A nanomechanical interface to rapid single-molecule interactions. Nature Communications 2011. [http://www.nature.com/ncomms/journal/v2/n3/full/ncomms1246.html link]
 
*Dong and Sahin. A nanomechanical interface to rapid single-molecule interactions. Nature Communications 2011. [http://www.nature.com/ncomms/journal/v2/n3/full/ncomms1246.html link]
*A. P. Fields, A. E. Cohen. Electrokinetic trapping at the one nanometer limit. PNAS 2011. [http://www.pnas.org/content/early/2011/05/09/1103554108.full.pdf+html?with-ds=yes link]
+
*A. P. Fields, A. E. Cohen. Electrokinetic trapping at the one nanometer limit. PNAS 2011. [http://www.pnas.org/content/early/2011/05/09/1103554108.full.pdf+html?with-ds=yes link] '''Maxwell T Pruner'''
 
*S. Husale, H. HJ. Persson, and O. Sahin. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009. [http://www.nature.com/nature/journal/v462/n7276/abs/nature08626.html link] '''Elizabeth Choe, Sneha Kannan (can only present on Dec. 4)'''
 
*S. Husale, H. HJ. Persson, and O. Sahin. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009. [http://www.nature.com/nature/journal/v462/n7276/abs/nature08626.html link] '''Elizabeth Choe, Sneha Kannan (can only present on Dec. 4)'''
 
*Hanay et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology 2012. [http://www.nature.com/nnano/journal/v7/n9/full/nnano.2012.119.html link]
 
*Hanay et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology 2012. [http://www.nature.com/nnano/journal/v7/n9/full/nnano.2012.119.html link]
Line 50: Line 53:
 
*P. J. Verveer ''et al.'', "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," ''Science'' '''290''' pp. 1567-70 (2000). '''Jessica Li & Kevin Li (can only do Dec 7th)'''
 
*P. J. Verveer ''et al.'', "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," ''Science'' '''290''' pp. 1567-70 (2000). '''Jessica Li & Kevin Li (can only do Dec 7th)'''
 
*S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," ''Biophys. J'' '''78'''(4), pp. 1736-47 (2000). '''Afrah Shafquat & Samira Daswani'''
 
*S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," ''Biophys. J'' '''78'''(4), pp. 1736-47 (2000). '''Afrah Shafquat & Samira Daswani'''
*B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," ''J Appl. Physiol.'' '''99''', pp. 2323-30 (2005). '''Cara Brown (can do either 4th or 7th)'''
+
*B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," ''J Appl. Physiol.'' '''99''', pp. 2323-30 (2005). '''Cara Brown (can do either 4th or 7th); Edgar Matias and Steven Carreno'''  
*J. C. Crocker ''et al.'', "Two-Point Microrheology of Inhomogeneous Soft Materials," ''Phys. Rev. Lett.'' '''85'''(4), pp. 888-91 (2000).
+
*J. C. Crocker ''et al.'', "Two-Point Microrheology of Inhomogeneous Soft Materials," ''Phys. Rev. Lett.'' '''85'''(4), pp. 888-91 (2000). '''Elizabeth Rowland and Stephanie Fung'''
*C. S. Chen ''et al.'', "Geometric control of cell life and death," ''Science'' '''276''' pp. 1425-28 (1997). '''Anirudh Arun, Shirley Galbiati'''
+
*C. S. Chen ''et al.'', "Geometric control of cell life and death," ''Science'' '''276''' pp. 1425-28 (1997). '''Anirudh Arun, Shirley Galbiati'''; '''Divya Chhabra, Mariana Duran'''
*Y. Wang ''et al.'', "Visualizing the mechanical activation of Src," ''Nature'' '''434''', pp. 1040-45 (2005). '''Jamal Elkhader & Queenie Chan'''
+
*Y. Wang ''et al.'', "Visualizing the mechanical activation of Src," ''Nature'' '''434''', pp. 1040-45 (2005). '''Jamal Elkhader and Queenie Chan; Lauren Berry'''
  
 
===3D Imaging===
 
===3D Imaging===
Line 70: Line 73:
  
 
===Optical manipulation (laser tweezers)===
 
===Optical manipulation (laser tweezers)===
*[http://www.nature.com/nmeth/journal/v9/n10/full/nmeth.2152.html Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke] Capitanio, et. al. [http://www.nature.com/nmeth/index.html Nature Methods] 9, 1013–1019 (2012) doi:10.1038/nmeth.2152
+
*[http://www.nature.com/nmeth/journal/v9/n10/full/nmeth.2152.html Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke] Capitanio, et. al. [http://www.nature.com/nmeth/index.html Nature Methods] 9, 1013–1019 (2012) doi:10.1038/nmeth.2152 '''Asmamaw Wassie, Prashant Patil'''
 
*[http://www.biophysj.org/cgi/reprint/81/2/767 The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Guck, et. al]
 
*[http://www.biophysj.org/cgi/reprint/81/2/767 The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells, Guck, et. al]
 
*[http://stacks.iop.org/JOptA/9/S103 Brau, R.R., ''et al.,'' "Passive and active microrheology with optical tweezers." ''Journal of Optics A: Pure and Applied Optics'' '''9''', pp. S103-S112 (2007).]
 
*[http://stacks.iop.org/JOptA/9/S103 Brau, R.R., ''et al.,'' "Passive and active microrheology with optical tweezers." ''Journal of Optics A: Pure and Applied Optics'' '''9''', pp. S103-S112 (2007).]
Line 78: Line 81:
  
 
===Magnetic Resonance Imaging and Contrast===
 
===Magnetic Resonance Imaging and Contrast===
*[http://www.ncbi.nlm.nih.gov/pubmed/8130344 Basser PJ, Mattiello J, LeBihan D, “Diffusion tensor spectroscopy and imaging,” Biophys J 1994.]
+
*[http://www.sciencedirect.com/science/article/pii/S0006349594807751 Basser PJ, Mattiello J, LeBihan D, “Diffusion tensor spectroscopy and imaging,” Biophys J 1994.]
*[http://www.ncbi.nlm.nih.gov/pubmed/19225521 Brunner et al, “Travelling-wave nuclear magnetic resonance,” Nature 2009.]  
+
*[http://www.nature.com/nature/journal/v457/n7232/full/nature07752.html Brunner et al, “Travelling-wave nuclear magnetic resonance,” Nature 2009.]  
*[http://www.ncbi.nlm.nih.gov/pubmed/1006309 Damadian R et al, “Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal,” Science 1976.]  
+
*[http://europepmc.org/abstract/MED/1006309/reload=0;jsessionid=37rBV5PKyycryJLgEsEz.0 Damadian R et al, “Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal,” Science 1976.]  
*[http://www.ncbi.nlm.nih.gov/pubmed/15988521 Gleich B & Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature 2005.]
+
*[http://www.nature.com/nature/journal/v435/n7046/abs/nature03808.html Gleich B & Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature 2005.]
*[http://www.ncbi.nlm.nih.gov/pubmed/2124706 Ogawa S et al, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc Natl Acad Sci USA 1990.]  
+
*[http://www.pnas.org/content/87/24/9868.short Ogawa S et al, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc Natl Acad Sci USA 1990.]  
*[http://www.ncbi.nlm.nih.gov/pubmed/15254532 Rugar D et al, “Single spin detection by magnetic resonance force microscopy,” Nature 2004.]
+
*[http://www.nature.com/nature/journal/v430/n6997/abs/nature02658.html Rugar D et al, “Single spin detection by magnetic resonance force microscopy,” Nature 2004.]
*[http://www.ncbi.nlm.nih.gov/pubmed/12872167 Zhou J et al, “Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI,” Nat Med.]
+
*[http://www.nature.com/nm/journal/v9/n8/abs/nm907.html Zhou J et al, “Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI,” Nat Med.]
  
 
===Molecular Imaging with MRI===
 
===Molecular Imaging with MRI===
*[http://www.ncbi.nlm.nih.gov/pubmed/16041364 Ahrens ET et al, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat Biotechnol 2005.]  
+
*[http://www.nature.com/nbt/journal/v23/n8/abs/nbt1121.html Ahrens ET et al, “In vivo imaging platform for tracking immunotherapeutic cells,” Nat Biotechnol 2005.] '''Paula Trepman & Tonia Tsinman (Dec 7 only); Holly Chamberlain and Nina Jreige'''
*[http://www.ncbi.nlm.nih.gov/pubmed/12930897 Ardenkjaer-Larsen JH et al, “Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR,” Proc Natl Acad Sci USA 2003.]
+
*[http://www.pnas.org/content/100/18/10158.short Ardenkjaer-Larsen JH et al, “Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR,” Proc Natl Acad Sci USA 2003.]
*[http://www.ncbi.nlm.nih.gov/pubmed/17351627 Cohen B et al, “MRI detection of transcriptional regulation of gene expression in transgenic mice,” Nat Med 2007.] '''Brian Joseph, Luis A. Juárez'''
+
*[http://www.nature.com/nm/journal/v13/n4/full/nm1497.html Cohen B et al, “MRI detection of transcriptional regulation of gene expression in transgenic mice,” Nat Med 2007.] '''Brian Joseph, Luis A. Juárez'''
*[http://www.ncbi.nlm.nih.gov/pubmed/9339438 Lin YJ & Koretsky AP, “Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function,” Magn Reson Med 1997.]
+
*[http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910380305/abstract Lin YJ & Koretsky AP, “Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function,” Magn Reson Med 1997.]
*[http://www.ncbi.nlm.nih.gov/pubmed/10700150 Louie AY et al, “In vivo visualization of gene expression using magnetic resonance imaging,” Nat Biotechnol 2000.]
+
*[http://www.contrib.andrew.cmu.edu/~hongyanx/web%20page%20materials/nbt0300_321.pdf Louie AY et al, “In vivo visualization of gene expression using magnetic resonance imaging,” Nat Biotechnol 2000.]
*[http://www.ncbi.nlm.nih.gov/pubmed/15768036 Higuchi M et al, “19F and 1H MRI detection of amyloid beta plaques in vivo,” Nat Neurosci 2005.]
+
*[http://www.nature.com/neuro/journal/v8/n4/full/nn1422.html Higuchi M et al, “19F and 1H MRI detection of amyloid beta plaques in vivo,” Nat Neurosci 2005.] '''Ryan Keating & Carlos Castellanos'''
  
 
===Electron microscopy===
 
===Electron microscopy===

Latest revision as of 17:53, 3 December 2012

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


Presentation guidelines

  • The allotted time is 10 minutes plus 2-3 minutes Q&A
  • Provide background to motivate why the research was conducted
  • Describe the key results of the paper (not necessarily all of the results) and explain the measurement method in an appropriate level of detail
  • Explain the significance of the results to the general field.
  • 10 minutes will not be nearly enough time to discuss every aspect of the paper so. Identify the most important aspects to include in your presentation.
  • Discuss the paper you select with 20.309 staff outside of class to address questions or thoughts you have about the paper.
  • Upload a Powerpoint or PDF file of your slides to Stellar the day before you present so the session organizer can use only one computer to avoid connection problems.

Non-presenters should read the papers carefully before the session to facilitate whorthwhile discussion.

Grading

Presentation grade is worth 8% of your total grade and is divided into the following categories:

  • 10%: sign up for your paper by the deadline: 'Monday, Nov 19. To sign up, add both presenter's names after the link to the paper on this page.
    • There are three presentation days (Dec 4, 6 and 7). If you or your partner will be away on one of these days, indicate this by your name on the wiki page.
  • 25%: Uploading presentation file to Stellar 6 hours before presentation session begins and ensuring that the file works. This is important since there will not be time to do this during the session.
  • 40%: Presentation – clarity, interpretation of paper, organization, adhering to the 10min time limit, ability to answer questions.
  • 25%: Attendance at the other two sessions

Presentation sessions

Suggested publications

Single cell analysis

  • Mettetal et al. The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 2008. link see also supplemental section Aislyn Schalck & Krithi Sundaram (can do either Dec 6 or Dec 7, Dec 7 is preferred) ; John Chen, Yimin Chen & Daniel Glover (only 6 Dec. works)
  • Love, et al. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nature Biotechnology 2006. link Sabina Sood & Shireen Rudina
  • J. Kralj, D. R. Hochbaum, A. D. Douglass, A. E. Cohen. Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011. link
  • Gossett et al Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 2012. link Katie Vogel & Hannah Johnsen
  • Tyson et al Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods 2012. link Divya Chhabra, Mariana Duran
  • Zhang et al. Microfluidics separation reveals the stem-cell–like deformability of tumor-initiating cells. PNAS 2012. link Michael Hwang & Paul Muir ; Robin Yeo & Colin Beckwitt

Biomolecular detection

  • Shapiro et al. Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation JACS 2012. link Alexa Schulte
  • Dong and Sahin. A nanomechanical interface to rapid single-molecule interactions. Nature Communications 2011. link
  • A. P. Fields, A. E. Cohen. Electrokinetic trapping at the one nanometer limit. PNAS 2011. link Maxwell T Pruner
  • S. Husale, H. HJ. Persson, and O. Sahin. DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 2009. link Elizabeth Choe, Sneha Kannan (can only present on Dec. 4)
  • Hanay et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology 2012. link

Optical Microscopy: Imaging

  • AR. Lowe, JJ. Siegel, P. Kalab, M. Sui, K. Weis and J. Liphardt, "Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking" Nature 2010
  • Z. E. Perlman et al., "Multidimensional Drug Profiling by Automated Microscopy," Science 306 pp. 1194-98 (2004) Laura Seaman & Shelley Ackerman
  • E. Chung, D. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," Opt. Lett. 31(7) pp. 945-7 (2006). Nahum Seifeselassie & Gonzalo Guajardo
  • T. Ichimura et al., "Application of tip-enhanced microscopy for nonlinear Raman spectroscopy," Appl. Phys. Lett. 84(10), pp. 1768-70 (2004)
  • T-W. Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering," Opt. Lett. 30(9), pp. 1024-6 (2005)
  • VF Pamplona, A Mohan, MM Oliveira, R Raskar "NETRA: Interactive Display for Estimating Refractive Errors and Focal Range," Proc. of SIGGRAPH 2010 (ACM Transactions on Graphics 29, 4), 2010.

Optical Microscopy: Biomechanics

  • S. M. Block et al., "Probing the kinesin reaction cycle with a 2D optical force clamp," PNAS 100(5), pp. 2351-56 (2003). Philip Smith
  • P. J. Verveer et al., "Quantitative Imaging of Lateral ErbB1 Receptor Signal Propagation in the Plasma Membrane," Science 290 pp. 1567-70 (2000). Jessica Li & Kevin Li (can only do Dec 7th)
  • S. Yamada, D. Wirtz, and S. C. Kuo, "Mechanics of Living Cells Measured by Laser Tracking Microrheology," Biophys. J 78(4), pp. 1736-47 (2000). Afrah Shafquat & Samira Daswani
  • B. Yap and R. D. Kamm, "Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels," J Appl. Physiol. 99, pp. 2323-30 (2005). Cara Brown (can do either 4th or 7th); Edgar Matias and Steven Carreno
  • J. C. Crocker et al., "Two-Point Microrheology of Inhomogeneous Soft Materials," Phys. Rev. Lett. 85(4), pp. 888-91 (2000). Elizabeth Rowland and Stephanie Fung
  • C. S. Chen et al., "Geometric control of cell life and death," Science 276 pp. 1425-28 (1997). Anirudh Arun, Shirley Galbiati; Divya Chhabra, Mariana Duran
  • Y. Wang et al., "Visualizing the mechanical activation of Src," Nature 434, pp. 1040-45 (2005). Jamal Elkhader and Queenie Chan; Lauren Berry

3D Imaging

  • D. Axelrod, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic 2 pp. 764-774 (2001).
  • JM. Walter, et al., "Light-powering Escherichia coli with proteorhodopsin" Proceedings of the National Academy of Sciences 104, pp. 2408–2412 (2007).
  • M. J. Miller et al., "Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node," Science 296 pp. 1869-73 (2002). Emily Brown, Meghan Nelson
  • H. Wang et al., "Coherent Anti-Stokes Raman Scattering Imaging of Axonal Myelin in Live Spinal Tissues," Biophys. J 89(1), pp. 581-91 (2005).
  • K. M. Hanson et al., "Two-Photon Fluorescence Lifetime Imaging of the Skin Stratum Corneum pH Gradient" Biophys. J 83(3) pp. 1682-90 (2002).Cuong Nguyen
  • P. J. Campagnola et al., "Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues," Biophys. J 81(1) pp. 493-508 (2002).

Superresolution microscopy

Optical manipulation (laser tweezers)

Magnetic Resonance Imaging and Contrast

Molecular Imaging with MRI

Electron microscopy

Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy Martell, et. al. Nature Biotechnology (2012) doi:10.1038/nbt.2375 Grant Robinson