Difference between revisions of "DNA Melting Thermodynamics"

From Course Wiki
Jump to: navigation, search
(Equilibrium concentrations of ssDNA and dsDNA)
(Equation for dsDNA fraction)
Line 50: Line 50:
 
Note that the above equation can be differentiated with respect to temperature to yield the (perhaps once!) familiar van't Hoff equation.
 
Note that the above equation can be differentiated with respect to temperature to yield the (perhaps once!) familiar van't Hoff equation.
  
==Equation for dsDNA fraction==
+
==Theoretical relation of dsDNA fraction and thermodynamic parameters==
  
 
{{LecturePoint|In the lab, the fraction of dsDNA will be measured with a fluorescent dye that preferentially binds to dsDNA. As such, it will be useful to derive an equation that relates the fraction of dsDNA to temperature and the thermodynamic parameters.}}
 
{{LecturePoint|In the lab, the fraction of dsDNA will be measured with a fluorescent dye that preferentially binds to dsDNA. As such, it will be useful to derive an equation that relates the fraction of dsDNA to temperature and the thermodynamic parameters.}}
Line 58: Line 58:
 
{{LecturePoint|Similarly, let <math>\left . C_{DS} \right .</math> be the concentration of double stranded DNA: <math>C_{DS} = {\left [ A \cdot A' \right ]}</math>}}
 
{{LecturePoint|Similarly, let <math>\left . C_{DS} \right .</math> be the concentration of double stranded DNA: <math>C_{DS} = {\left [ A \cdot A' \right ]}</math>}}
  
{{LecturePoint|<math>\left . C_T \right .</math> is the total concentration of DNA. <math>\left . C_T = 2 C_{SS} + 2 C_{DS}\right .</math>}}
+
{{LecturePoint|<math>\left . C_T \right .</math> is the total concentration of DNA strands. <math>\left . C_T = 2 C_{SS} + 2 C_{DS}\right .</math>}}
  
 
{{LecturePoint|Let <math>\left . f \right .</math> be the fraction of total DNA that is double stranded}}
 
{{LecturePoint|Let <math>\left . f \right .</math> be the fraction of total DNA that is double stranded}}

Revision as of 14:54, 17 August 2012

20.309: Biological Instrumentation and Measurement

ImageBar 774.jpg


DNA in solution

$ \bullet $ Consider a solution containing equal quantities of complementary single stranded DNA (ssDNA) oligonucleotides $ \left . A \right . $ and $ \left . A' \right . $.
$ \bullet $ Complementary ssDNA strands bond to form double stranded DNA (dsDNA). The reaction is governed by the equation $ 1 A + 1 A' \Leftrightarrow 1 A \cdot A' $

DNA strands in solution.gif

$ \bullet $ The forward reaction in which two ssDNA oligos combine to form dsDNA is called annealing. The reverse process is called thermal denaturation or melting.
$ \bullet $ At low temperatures, dsDNA is favored. As the temperature rises, dsDNA increasingly separates into its component ssDNA oligos. (Think about why with respect to enthalpic and entropic considerations.
$ \bullet $ The melting temperature, $ \left . T_m \right . $, is defined to be the point where half of the dsDNA is denatured.
$ \bullet $ Short sequences of about 10-40 base pairs (such as those used in the DNA Melting lab) tend to denature all at once, while longer sequences may melt in segments.
$ \bullet $ Less energy is required to split the double hydrogen bond of A-T pairs than the triple bond of G-C pairs. Thus, A-T rich sequences tend to melt at lower temperatures than G-C rich ones.[1]

Several web tools are available to predict the melting temprature. (See, for example, DINA Melt or Oligocalc.)

AT Pairing.pngGC Pairing.png

Fundamental equilibrium relationships

$ \bullet $ The concentrations of the reaction products are related by the equilibrium constant: $ K_{eq} = \frac{\left [ A \cdot A' \right ]}{\left [ A \right ] \left [ A' \right ]} $
$ \bullet $ The value of $ \left . K_{eq} \right . $ is a function of temperature. We can equate the fundamental definition of the standard free energy change with its relationship to the equilibrium constant in solution:
$ \begin{align} \Delta G^{\circ} & = \Delta H^{\circ} - T \Delta S^{\circ}\\ & = -R T \ln K_{eq}\\ \end{align} $
where
$ \Delta G^{\circ} $ is the standard change in free energy
$ \Delta H^{\circ} $ is the standard enthalpy change
$ \left . T \right . $ is the temperature
$ \Delta S^{\circ} $ is the standard entropy change
$ \left . R \right . $is the gas constant
$ \bullet $ Solving for $ \left . K \right . $:
$ K_{eq} = e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ] \quad (1) $

Note that the above equation can be differentiated with respect to temperature to yield the (perhaps once!) familiar van't Hoff equation.

Theoretical relation of dsDNA fraction and thermodynamic parameters

$ \bullet $ In the lab, the fraction of dsDNA will be measured with a fluorescent dye that preferentially binds to dsDNA. As such, it will be useful to derive an equation that relates the fraction of dsDNA to temperature and the thermodynamic parameters.
$ \bullet $ Let $ \left . C_{SS} \right . $ represent the concentration of either single stranded oligonucleotide: $ C_{SS} = {\left [ A \right ] = \left [ A' \right ]} $.
$ \bullet $ Similarly, let $ \left . C_{DS} \right . $ be the concentration of double stranded DNA: $ C_{DS} = {\left [ A \cdot A' \right ]} $
$ \bullet $ $ \left . C_T \right . $ is the total concentration of DNA strands. $ \left . C_T = 2 C_{SS} + 2 C_{DS}\right . $
$ \bullet $ Let $ \left . f \right . $ be the fraction of total DNA that is double stranded
$ f = \frac{2 C_{DS}}{C_T} = \frac{C_T - 2 C_{SS}}{C_T} = 1 - 2 \frac{C_{SS}}{C_T} $
$ \bullet $ Therefore, $ C_{SS} = \frac{(1 - f)C_T}{2} $
$ \bullet $ Now we can solve for $ \left . K \right . $ in terms of $ \left . f \right . $ and $ \left . C_T \right . $:
$ K_{eq} = \frac{C_{DS}}{C_{SS}^2} = \frac{f C_T / 2}{ [(1 - f) C_T / 2] ^ 2} = \frac{2 f}{(1 - f)^2 C_T} $
$ \bullet $ At the melting point, $ f = \frac{1}{2} $ and $ K_{eq} = \frac {4}{C_T} $.
$ \bullet $ Substituting from equation 1:
$ e^\left [\frac{\Delta S}{R} - \frac{\Delta H}{R T} \right ] = \frac{2 f}{(1 - f)^2 C_T} \quad (2) $
$ \bullet $ Taking the log of both sides and solving for $ \left . T \right . $,
$ T(f) = \frac{\Delta H^{\circ}}{\Delta S^{\circ}-R \ln(2f/C_T(1-f)^2)} $

Simulating DNA melting

$ \bullet $ For simulating DNA melting experiments, it will be convenient to have an expression for $ \left . f \right . $ in terms of $ \left . T \right . $. Unfortunately, this gets pretty yucky. On the bright side, Matlab and Python are good at calculating yuck.
$ \bullet $ Taking the log of both sides of equation 2 and using the quadratic formula (eliminating the nonphysical root):
$ f = \frac{1 + C_T K_{eq} - \sqrt{1 + 2 C_T K_{eq}}}{C_T K_{eq}} $
$ \bullet $ Substituting from equation 1 gives the desired result.
$ f = \frac{1 + C_T e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ] - \sqrt{1 + 2 C_T e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ]}}{C_T e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ]} $

See the pages DNA Melting Part 1: Simulating DNA Melting - Basics. And if you're interested in a Python implementation see Python:Simulating DNA Melting

References

  1. Breslauer et al., Predicting DNA duplex stability from the base sequence PNAS 83: 3746, 1986