Difference between revisions of "DNA Melting Thermodynamics"

From Course Wiki
Jump to: navigation, search
Line 3: Line 3:
 
{{LecturePoint|Consider a solution containing equal quantities of complementary single stranded DNA (ssDNA) oligonucleotides <math>\left . A \right .</math> and <math>\left . A' \right .</math>.}}
 
{{LecturePoint|Consider a solution containing equal quantities of complementary single stranded DNA (ssDNA) oligonucleotides <math>\left . A \right .</math> and <math>\left . A' \right .</math>.}}
  
{{LecturePoint|Some of the strands combine to form double stranded DNA (dsDNA). The reaction is governed by the equation <math>1 A + 1 A' \Leftrightarrow 1 A \cdot A'</math>}}
+
{{LecturePoint|Hydrogen bonds form between complementary ssDNA strands to form double stranded DNA (dsDNA). The reaction is governed by the equation <math>1 A + 1 A' \Leftrightarrow 1 A \cdot A'</math>}}
 +
 
 +
{{LecturePoint|The forward reaction where two ssDNA oligos combine to form dsDNA is called annealing. The reverse process is called thermal denaturation or melting.}}
  
 
==Equilibrium concentrations of ssDNA and dsDNA==
 
==Equilibrium concentrations of ssDNA and dsDNA==
Line 12: Line 14:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
\Delta G & = \Delta H - T \Delta S\\
+
\Delta G^{\circ} & = \Delta H^{\circ} - T \Delta S^{\circ}\\
 
& = -R T \ln K\\
 
& = -R T \ln K\\
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 
:where
 
:where
::<math>\Delta G</math> is the change in free energy
+
::<math>\Delta G^{\circ}</math> is the change in free energy
::<math>\Delta H</math> is the enthalpy change
+
::<math>\Delta H^{\circ}</math> is the enthalpy change
::T is the absolute temperature
+
::<math>\left . T \right .</math> is the temperature
::<math>\Delta S</math> is the entropy change
+
::<math>\Delta S^{\circ}</math> is the entropy change
::R is the [http://en.wikipedia.org/wiki/Gas_constant gas constant]
+
::<math>\left . R \right .</math>is the [http://en.wikipedia.org/wiki/Gas_constant gas constant]
  
 
{{LecturePoint|Solving for <math>\left . K \right .</math>:}}
 
{{LecturePoint|Solving for <math>\left . K \right .</math>:}}
 
:<math>
 
:<math>
K_{eq} = e^\left [\frac{\Delta S}{R} - \frac{\Delta H}{R T} \right ] \quad (1)
+
K_{eq} = e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ] \quad (1)
 
</math>
 
</math>
  
 
{{LecturePoint|At low temperatures, dsDNA is favored. As the temperature increases, more of the strands separate into their component ssDNA oligos.}}
 
{{LecturePoint|At low temperatures, dsDNA is favored. As the temperature increases, more of the strands separate into their component ssDNA oligos.}}
 
{{LecturePoint|The transformation from dsDNA to ssDNA is called denaturation or melting.}}
 
  
 
{{LecturePoint|Short sequences of about 10-40 base pairs (such as those used in the DNA Melting lab) tend to denature all at once, while longer sequences may melt in segments.}}
 
{{LecturePoint|Short sequences of about 10-40 base pairs (such as those used in the DNA Melting lab) tend to denature all at once, while longer sequences may melt in segments.}}
Line 56: Line 56:
 
       = \frac{f C_T / 2}{ [(1 - f) C_T / 2] ^ 2}
 
       = \frac{f C_T / 2}{ [(1 - f) C_T / 2] ^ 2}
 
       = \frac{2 f}{(1 - f)^2 C_T}
 
       = \frac{2 f}{(1 - f)^2 C_T}
 +
</math>
  
 
{{LecturePoint|At the melting point, <math>f = \frac{1}{2}</math> and <math>K_{eq} = \frac {4}{C_T}</math>.}}
 
{{LecturePoint|At the melting point, <math>f = \frac{1}{2}</math> and <math>K_{eq} = \frac {4}{C_T}</math>.}}
 
</math>
 
  
 
{{LecturePoint|Substituting from equation 1,}}
 
{{LecturePoint|Substituting from equation 1,}}
Line 66: Line 65:
 
</math>
 
</math>
  
{{LecturePoint|Taking the log of both sides and applying the quadratic formula gives <math>\left . f \right .</math> as a function of
+
{{LecturePoint|Taking the log of both sides and applying the quadratic formula gives an expression for <math>\left . f \right .</math> as a function of <math>\left . T \right .</math>,}}
 +
:<math>
 +
T(f) = \frac{\Delta H^{\circ}}{\Delta S^{\circ}-R \ln
 +
(2f/C_T(1-f)^2)}
 +
</math>

Revision as of 18:27, 9 April 2008

DNA solution

$ \bullet $ Consider a solution containing equal quantities of complementary single stranded DNA (ssDNA) oligonucleotides $ \left . A \right . $ and $ \left . A' \right . $.
$ \bullet $ Hydrogen bonds form between complementary ssDNA strands to form double stranded DNA (dsDNA). The reaction is governed by the equation $ 1 A + 1 A' \Leftrightarrow 1 A \cdot A' $
$ \bullet $ The forward reaction where two ssDNA oligos combine to form dsDNA is called annealing. The reverse process is called thermal denaturation or melting.

Equilibrium concentrations of ssDNA and dsDNA

$ \bullet $ The concentrations of the reaction products are related by the equilibrium constant: $ K_{eq} = \frac{\left [ A \cdot A' \right ]}{\left [ A \right ] \left [ A' \right ]} $
$ \bullet $ The value of $ \left . K_{eq} \right . $ is a function of temperature. According to the van't Hoff equation:
$ \begin{align} \Delta G^{\circ} & = \Delta H^{\circ} - T \Delta S^{\circ}\\ & = -R T \ln K\\ \end{align} $
where
$ \Delta G^{\circ} $ is the change in free energy
$ \Delta H^{\circ} $ is the enthalpy change
$ \left . T \right . $ is the temperature
$ \Delta S^{\circ} $ is the entropy change
$ \left . R \right . $is the gas constant
$ \bullet $ Solving for $ \left . K \right . $:
$ K_{eq} = e^\left [\frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{R T} \right ] \quad (1) $
$ \bullet $ At low temperatures, dsDNA is favored. As the temperature increases, more of the strands separate into their component ssDNA oligos.
$ \bullet $ Short sequences of about 10-40 base pairs (such as those used in the DNA Melting lab) tend to denature all at once, while longer sequences may melt in segments.
$ \bullet $ Less energy is required to split the double hydrogen bond of A-T pairs than the triple bond of G-C pairs. Thus, A-T rich sequences tend to melt at lower temperatures than G-C rich ones.[1]

Fraction of dsDNA as a function of temperature

$ \bullet $ Let $ \left . C_{SS} \right . $ represent the concentration of either single stranded oligonucleotide: $ C_{SS} = {\left [ A \right ] = \left [ A' \right ]} $.
$ \bullet $ Similarly, let $ \left . C_{DS} \right . $ be the concentration of double stranded DNA: $ C_{DS} = {\left [ A \cdot A' \right ]} $
$ \bullet $ $ \left . C_T \right . $ is the total concentration of DNA. $ \left . C_T = 2 C_{SS} + 2 C_{DS}\right . $
$ \bullet $ Let $ \left . f \right . $ be the fraction of total DNA that is double stranded
$ f = \frac{2 C_{DS}}{C_T} = \frac{C_T - 2 C_{SS}}{C_T} = 1 - 2 \frac{C_{SS}}{C_T} $
$ \bullet $ Therefore, $ C_{SS} = \frac{(1 - f)C_T}{2} $
$ \bullet $ Now we can solve for $ \left . K \right . $ in terms of $ \left . f \right . $ and $ \left . C_T \right . $:
$ K_{eq} = \frac{C_{DS}}{C_{SS}^2} = \frac{f C_T / 2}{ [(1 - f) C_T / 2] ^ 2} = \frac{2 f}{(1 - f)^2 C_T} $
$ \bullet $ At the melting point, $ f = \frac{1}{2} $ and $ K_{eq} = \frac {4}{C_T} $.
$ \bullet $ Substituting from equation 1,
$ e^\left [\frac{\Delta S}{R} - \frac{\Delta H}{R T} \right ] = \frac{2 f}{(1 - f)^2 C_T} $
$ \bullet $ Taking the log of both sides and applying the quadratic formula gives an expression for $ \left . f \right . $ as a function of $ \left . T \right . $,
$ T(f) = \frac{\Delta H^{\circ}}{\Delta S^{\circ}-R \ln (2f/C_T(1-f)^2)} $


Cite error: <ref> tags exist, but no <references/> tag was found