Difference between revisions of "DNA Melting Thermodynamics"

From Course Wiki
Jump to: navigation, search
Line 1: Line 1:
 
==DNA solution==
 
==DNA solution==
  
*Consider a solution of complementary DNA oligonucleotides <math>\left . A \right .</math> and <math>\left . A' \right .</math>.
+
{{LecturePoint|Consider a solution of complementary DNA oligonucleotides <math>\left . A \right .</math> and <math>\left . A' \right .</math>.}}
*The oligos combine by the reaction <math>1 A + 1 A' \Leftrightarrow 1 AA'</math>
+
{{LecturePoint|The oligos combine by the reaction <math>1 A + 1 A' \Leftrightarrow 1 AA'</math>}}
*The concentration of the unpaired oligos are denoted by <math>\left [ A \right ]</math> and <math>\left [ A' \right ]</math>. <math>\left [ AA' \right ]</math> is the concentration of paired oligos.
+
{{LecturePoint|The concentration of the unpaired oligos are denoted by <math>\left [ A \right ]</math> and <math>\left [ A' \right ]</math>. <math>\left [ AA' \right ]</math> is the concentration of paired oligos.}}
*At equilibrium, the concentrations of the reaction products are related by: <math>
+
{{LecturePoint|At equilibrium, the concentrations of the reaction products are related by: <math>
 
K = \frac{\left [ AA' \right ]}{\left [ A \right ] \left [ A' \right ]}
 
K = \frac{\left [ AA' \right ]}{\left [ A \right ] \left [ A' \right ]}
</math>''(eq. 1)''
+
</math>}}
*<math>\left . C_T \right .</math> is the total concentration of single stranded DNA. <math>
+
{{LecturePoint|<math>\left . C_T \right .</math> is the total concentration of single stranded DNA. <math>
 
C_T = \left [ A \right ] + \left [ A' \right ] + 2 \left [ AA' \right ]
 
C_T = \left [ A \right ] + \left [ A' \right ] + 2 \left [ AA' \right ]
</math>
+
</math>}}
*<math>\left . f \right .</math> is the fraction of DNA that is double stranded <math>
+
{{LecturePoint|<math>\left . f \right .</math> is the fraction of DNA that is double stranded <math>
 
f = \frac{2 \left [ AA' \right ]}{C_T}
 
f = \frac{2 \left [ AA' \right ]}{C_T}
</math>
+
</math>}}
*Solving for <math>\left . K \right .</math> in terms of <math>\left . f \right .</math>:
+
{{LecturePoint|Solving for <math>\left . K \right .</math> in terms of <math>\left . f \right .</math>:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
Line 20: Line 20:
 
   = \frac{\frac{2 \left [ AA' \right ]}{C_T}}{2 C_T \left ( \frac{1}{2} - \frac{1}{2}\frac{2 \left [ AA' \right ]}{C_T} \right ) ^ 2} \\
 
   = \frac{\frac{2 \left [ AA' \right ]}{C_T}}{2 C_T \left ( \frac{1}{2} - \frac{1}{2}\frac{2 \left [ AA' \right ]}{C_T} \right ) ^ 2} \\
 
   & = \frac{f}{2 C_T \left ( \frac{1}{2} - \frac{1}{2} f \right ) ^2}
 
   & = \frac{f}{2 C_T \left ( \frac{1}{2} - \frac{1}{2} f \right ) ^2}
\end{align}
+
\end{align}  
</math>
+
</math>}}
  
 
==Free energy==
 
==Free energy==

Revision as of 22:34, 31 March 2008

DNA solution

$ \bullet $ Consider a solution of complementary DNA oligonucleotides $ \left . A \right . $ and $ \left . A' \right . $.
$ \bullet $ The oligos combine by the reaction $ 1 A + 1 A' \Leftrightarrow 1 AA' $
$ \bullet $ The concentration of the unpaired oligos are denoted by $ \left [ A \right ] $ and $ \left [ A' \right ] $. $ \left [ AA' \right ] $ is the concentration of paired oligos.
$ \bullet $ At equilibrium, the concentrations of the reaction products are related by: $ K = \frac{\left [ AA' \right ]}{\left [ A \right ] \left [ A' \right ]} $
$ \bullet $ $ \left . C_T \right . $ is the total concentration of single stranded DNA. $ C_T = \left [ A \right ] + \left [ A' \right ] + 2 \left [ AA' \right ] $
$ \bullet $ $ \left . f \right . $ is the fraction of DNA that is double stranded $ f = \frac{2 \left [ AA' \right ]}{C_T} $
$ \bullet $ Solving for $ \left . K \right . $ in terms of $ \left . f \right . $:
$ \begin{align} K & = \frac{\left [ AA' \right ]}{\left ( \frac{1}{2} C_T - \left [ AA' \right ] \right ) ^ 2} = \frac{\left [ AA' \right ]}{C_T^2 \left ( \frac{1}{2} - \frac{\left [ AA' \right ]}{C_T} \right ) ^ 2} = \frac{\frac{2 \left [ AA' \right ]}{C_T}}{2 C_T \left ( \frac{1}{2} - \frac{1}{2}\frac{2 \left [ AA' \right ]}{C_T} \right ) ^ 2} \\ & = \frac{f}{2 C_T \left ( \frac{1}{2} - \frac{1}{2} f \right ) ^2} \end{align} $

Free energy

$ \begin{align} \Delta G & = \Delta H - T \Delta S \quad (1)\\ & = -R T \ln K \quad (2)\\ \end{align} $

where

$ \Delta G $ is the change in free energy
$ \Delta H $ is the enthalpy change
T is the absolute temperature
$ \Delta S $ is the entropy change
R is the gas constant
K is the dissociation constant

Let $ C_T \quad $ be the total concentration of ssDNA.

$ \begin{align} C_{ss} & = \left [ A \right ] = \left [ A' \right ] \quad (3) \\ C_{ds} & = \left [ AA' \right ] \quad (4) \\ \end{align} $