Module 2 overview

lecture

- 1. Introduction to the module
- 2. Rational protein design
- 3. Fluorescence and sensors
- 4. Protein expression

SPRING BREAK

- 5. Review & gene analysis
- 6. Purification and protein analysis
- 7. Binding & affinity measurements
- 8. High throughput engineering

lab

- 1. Start-up protein eng.
- 2. Site-directed mutagenesis
- 3. DNA amplification
- 4. Prepare expression system
- 5. Gene analysis & induction
- 6. Characterize expression
- 7. Assay protein behavior
- 8. Data analysis

Lecture 8: High throughput engineering

- I. Paper discussion
- II. General requirements for HT engineering
 - A. High throughput vs. rational design
 - B. Generating libraries
- III. Selection techniques
 - A. Phage display and related techniques
 - B. Selection for properties other than affinity

Module 2 assignment

Protein engineering research article

- 1. Abstract
- 2. Introduction
- 3. Materials and Methods
- 4. Results
- 5. Discussion

Begin with brief summary of rationale and results
Pick out a few high level topics to discuss (3-4 pp. DS)
Relate to the major themes/questions from your introduction
How reliable were your results, and what are caveats?
(but do not dwell on minor technical problems)
Did results confirm hypothesis and why/why not?
(be specific and relate to protein structure)
How do results relate to literature or other class findings?
What follow-up experiments could be performed?
What is the overall significance/impact of your results?

- 6. References
- 7. Figures

class mutants 2013

101 SAAQLRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTA $_{\mathbb{P}}$

Rational protein design:

Knowldege-based, deterministic engineering of proteins with novel characteristics

"Irrational" high throughput protein engineering:

Selection for desired properties from libraries of random variants

Methods for generating mutant genetic libraries:

- site-directed mutagenesis with degenerate primers
- error-prone PCR
- gene shuffling

Degenerate primers

- not all combinations of AA's possible at each position
- number of combinations expands exponentially
- degenerate primers synthesized by split-pool method
- standard primer design criteria must be considered

PCR polymerase and conditions may be chosen to promote mutations

Polymerase	Template doublings (d) ^a	lacI ⁻ plaques ^b (% ± SD)	Mutation load ^c (per kilobase) (±SD)	Error rate ^d (per base) ($\times 10^{-6} \pm SD$)
Pfu-Pol (exo ⁺)	12.3	0.61 ± 0.09	0.017 ± 0.002	1.4 ± 0.2
Pfu-Pol (exo ⁻) Taq-Pol	11.8 11.6	20 ± 1.7 3.9 ± 0.16	0.58 ± 0.05 0.12 ± 0.006	49 ± 4 10 ± 0.5

error rate = mutation load ÷ template doublings

Mutation	Pfu-Pol(exo ⁻) D473G ^a	Taq-Pol (Mn ²⁺ / unbalanced dNTPs) ^b	Taq-Pol (Mn ²⁺ / unbalanced dNTPs) ^c	Taq-Pol (unnatural mutagenic bases) ^d
$A \rightarrow T/T \rightarrow A$	28	40.9	11.4	0.2
$A \rightarrow C/T \rightarrow G$	7.4	7.3	3.3	8.4
$A \rightarrow G/T \rightarrow C$	19.2	27.6	60.9	78.3
$G \rightarrow A/C \rightarrow T$	22	13.6	18.1	13.2
$G \rightarrow C/C \rightarrow G$	7.3	1.4	4.3	0.7
$G \rightarrow T/C \rightarrow A$	10.3	4.5	1.8	0.0
Insertion	2.9	0.3	Not given	~ 0
Deletion	2.9	4.2	Not given	~ 0

Gene shuffling techniques mimic diversity due to meiotic recombination:

- fragments of homologous genes combined using "sexual PCR"
- diversity may arise from error prone PCR or multiple genes

Brannigan & Wilkinson (2002) Nat. Rev. Mol. Cell. Biol. 3: 964-70

How are libraries of mutant proteins screened?

All major methods include a strategy to keep DNA sequence info associated with the proteins that are being screened.

Phage display is a versatile high throughput method to do this:

protein "displayed" on the coat of a bacteriophage, by fusing to a natural phage coat protein

Application: phage-displayed peptides that bind to GaAs

selected sequences

phages patterned on target substrate

Whaley et al. (2000) Nature 405: 665-8.

Yeast display: similar to phage display, but with proteins fused to a *Saccharomyces* cell wall protein (DNA in yeast)

What would you expect advantages to be, compared with phage display?

Antigen V_H V_L C-Myc Aga2p

Aga1p

Yeast surface

In this example, a population of scFvs was screened for binding to an antigen

left: selection criterion for FACS assayright: comparison of wt (blue) and selected (red) scFv binding

Why not more stringent selection?

Chao et al. (2006) Nat. Protoc. 1: 755-68

What about properties other than affinity?

A simple example: screen for DsRed variants with different excitation and emission wavelengths—how could this be done?

Shaner et al. (2004) Nat. Biotechnol. 22: 1567-72

another example: neurotransmitter sensor for MRI

This screen only involved ~500 variants/round; under what circumstances would you expect this level of throughput to be successful?

Which type of screening method to use?

screen method	throughput	other notes
SELEX	10 ¹⁵	selection of DNA/RNA
ribosome display	10 ¹⁵	in vitro protein synthesis
phage display	10 ¹¹	best for small proteins/peptides
yeast display	10 ⁸	compatible w/eukar. proteins
plate assays	< 10 ⁵	versatile but more complex

number of variants in a protein library

x residues = 20^x possible variants

12 residues = 4×10^{15} variants

lesson: impossible to cover sequence space except with short sequences (or few positions) and only the most high throughput techniques

Good luck with your papers!