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Day 6 Part 2 - Clustering

An important technique in many bioinformatic analyses is clustering, a way to assign similar samples to
groups. We’ll explore two types of clustering by hand before returning to R.

1. Hierarchical Clustering builds a hierarchy of clusters. In the agglomerative, or bottom-up, method
of hierarchical clustering, the two most similar samples or clusters are joined into one cluster repetitively.
Work out the hierarchical clustering of the following 2D data points, using Euclidean distance (the
length of a straight line between two points) and complete linkage (once a cluster contains more than
one point, calculate the distance between two clusters as the longest distance between any two points in
the respective clusters). Show each step, and when you’re done, draw a dendrogram to show the results.

Point 1: (0,0)

Point 2: (3,0)

Point 3: (0,6)

Point 4: (21,2)

Point 5: (23,2)

Round 1: Dist 1 to 2: 3.000
Dist 1 to 3: 6.000
Dist 1 to 4: 21.095
Dist 1 to 5: 23.087
Dist 2 to 3: 6.708
Dist 2 to 4: 18.111
Dist 2 to 5: 20.100
Dist 3 to 4: 21.378
Dist 3 to 5: 23.345
Dist 4 to 5: 2.000

New clusters: (1), (2), (3), (4,5)

Round 2:
Linkage cluster 1 to 2: 3.000
Linkage cluster 1 to 3: 6.000
Linkage cluster 1 to 4: 23.087
Linkage cluster 2 to 3: 6.708
Linkage cluster 2 to 4: 20.100
Linkage cluster 3 to 4: 23.34

New clusters: (1,2), (3), (4,5)

Round 3:
Linkage cluster 1 to 2: 6.708
Linkage cluster 1 to 3: 23.087
Linkage cluster 2 to 3: 23.34

New clusters: (1,2,3), (4,5)
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Round 4:
Linkage cluster 1 to 2: 23.345

Now, open the script “intro_clustering.R” and run the code for Problem 1 to see if you get the same
dendrogram as R. Save your heatmap to a jpeg image file by clicking Export in the Plots window.
#Plot the given points
x = c(0,3,0,21,23)
y = c(0,0,6,2,2)
plot(x,y)

#Create a matrix to hold all the points, with x and y as rows
m = matrix(nrow=2, ncol=5)
m[1,] = x
m[2,] = y

#We've created our matrix with the x and y coordinates ("genes") as rows
#and the different points ("samples") as columns. This is how most biological
#matrices are organized, but many functions expect it to be the other way
#around, so let's also get the transverse of our matrix
trm = t(m)

#Heatmap and dendrogram. If you haven't already, load the package.
library("pheatmap")
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#calculate Euclidean distance between the points
pointsDist = dist(trm, method = "euclidean")
#Draw a heatmap of the distances, with dendrograms from heirarchical clustering
pheatmap(pointsDist, labels_col=seq(from=1, to=5))
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2. K-means Clustering is another clustering technique. In this algorithm, you decide ahead of time on
a value for k, which is the number of clusters you’ll get. You randomly choose k points to be the center
or “centroid” of each cluster, and then iteratively assign nearby points to those clusters. Once a cluster
has more than one point, the “centroid” is the average of the points in that cluster. Cluster the above
points by k-means clustering, with k=3 by hand. Show your work.

• Use points 3, 4, and 5 as your initial centroids.
• Use points 1, 3, and 4 as your initial centroids.

Starting with points 3, 4,and 5:

• Assign point 1 to the cluster with point 3. The centroid is now (0,3)

• Assign point 2 to the cluster with centroid (0,3). The centroid is now (1,2)

• Point 4 remains its own cluster

• Point 5 remains its own cluster

• Repeating the assignments does not cause the centroids to change any more, so the
algorithm is done

Starting with points 1, 3, and 4:

• Point 1 remains its own cluster

• Assign point 2 to the cluster with point 1. The centroid is now (1.5,0)

• Point 3 remains its own cluster

• Point 4 remains its own cluster

• Assign point 5 to the cluster with point 4. The centroid is now (22,2)
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• Repeating the assignments does not cause the centroids to change any more, so the
algorithm is done

Finally, try out the code in intro_clustering.R and save your colored plot as a jpeg image.
#Run kmeans with k=3. We'll tell the algorithm to choose 5 sets of random
#starting points and give us the most common answer
kclusters = kmeans(trm, centers=3, nstart=5)
#Plot the data, with different colors for the 3 clusters
clus = kclusters$cluster
plot(x, y, col=clus)
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3. Principal Components Analysis is another technique, in which the data points (which often have
more dimentions than our 2D points) are projected onto the 2D plane such that they spread out in the
two directions that explain most of the difference between them. The x-axis (PC1) is the direction that
separates the data points the most. The y-axis (PC2) is a direction (it must be orthogonal to the first
direction) that separates the data the second most. The percent of the total variance that is contained
in the direction is printed in the axis label. Here we’ll use R to cluster a larger high-dimensional dataset.
Use the code in intro_clustering.R to generate a random dataset for 15 samples, with information on
100 genes each. Create a heatmap and run principle components analysis on these data.

• After hierarchical clustering, save your heatmap as a jpg file. What are the two most similar samples to
sample 7?

• Now run principle components analysis on this data. Save the individuals factors graph to a jpeg
image. Are the same samples the most similar to sample 7 with this technique? Notice how much of
the variation is explained in this 2-D chart. Do you think this is a good representation of the data?

#Generate a matrix of random data for 15 samples, where we've measured the
#differential RNA levels of 100 genes in every sample. We'll set a seed so
#that everyone's data looks the same.
set.seed(20)
exSample = rnorm(100)
exData = replicate(15, rnorm(100))
#Hierarchical clustering & heatmap
pheatmap(exData, labels_col=seq(from=1, to=15))
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#PCA - we'll use a package called FactoMineR for this
library(FactoMineR)
result = PCA(t(exData))
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Individuals factor map (PCA)
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Variables factor map (PCA)
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The closest samples to sample 7 are samples 4 and 10. Note that sample 11 is next to sample
7 in the heatmap, but is not very closely related according to the dendrogram. Samples 4 and
10 are also close to 7 in the PCA, along with sample 9. Only ~24% of the variance in this
random data is explained by the two PCA axes, so this is not a great representation of the
data.
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