M2D1: Complete *in silico* cloning of dCas9 expression plasmid

- 1. Prelab
- 2. In silico cloning
- 3. Set up confirmation digest reaction by 4:30pm

(Almost) done with Mod 1!

- Data summary due: Saturday March 12 at 10pm
 - Additional office hours announced soon

Revision (if you want) due: Sunday
March 20 at 10pm

Experimental design for Mod 1: Localization

Localization:

- How does this connect to drug discovery and TDP43?
- Aberrant localization to cytoplasm has been reported to promote cytoplasmic aggregation of TDP43
 - Is it too late for treatment by the time we get to aggregates?
 - Could be valuable to target an early step in that process
 - Look for a small molecule that can regulate TDP43 localization
- Does your small molecule have any effect on basal localization of TDP43?

Data Summary Questions?

Mod 2 Due Dates (because we haven't given you enough to think about...)

- Journal Club presentation (15%)
 - Individual
 - Presentations on 3/29 & 3/31
- Research article (20%)
 - Individual
 - due 4/23
- Laboratory quizzes (collectively 5%)
 - M2D4 and M2D7
- Notebook (collectively 5%)
 - one entry will be graded in detail by Christine
- Blog (part of 5% Participation)
 - due 4/1 & 4/25 via Slack channel

Mod 2: Metabolic engineering using CRISPRi

- Research goal: Increase the yield of commercially valuable byproducts in E.coli using CRIPSRi technology to target genes involved in mixed-acid fermentation pathway.
- Today we are generating a plasmid to express dCas9, a key component of our CRISPRi system
- We are also learning about how our CRISPRi system was designed so that we can employ it most effectively
- Next time we will learn about the metabolic pathways we are targeting and design tools to manipulate genes in those pathways to produce ethanol or acetate

Cloning of pdCas9:

1. PCR amplification of DNA:

2. Digestion:

3. Ligation:

Moving alcas 9 gene From one plasmal-indo due us

Primer design guidelines

forward primer landing

- Length: 17-28 base pairs
- GC content: 40-60%
 - GC has hydrogen bonds; AT has hydrogen bonds
 - GC clamp at ends
- T_m(primer) < 65 °C
- Avoid secondary structures
 - hairpins
 - complementation w/in primer sequence primer dues
- Avoid repetitive sequences
 - Max of 4 di-nucleotide repeats (ex. ATATAT)
 - Max of 4 bp in a run (ex. GATGGGG)

In silico cloning in SnapGene

- Work through the steps of cloning without the hours of incubations
 - Primer design and PCR amplification of insert
 - Restriction enzyme digest of insert and backbone
 - Ligation of insert into new backbone

Generate plasmid map of dCas9 in new vector

- The plasmid you generate in silico is the same one we generated in the lab
 - Want to test that we generated the correct plasmid

Use a confirmation digest to test correct plasmid construction

- Use 2 restriction enzymes to cut the plasmid
 - Different from REs used to cut insert and backbone
 - One RE cuts only insert
 - One RE cuts only vector
- Can infer correct insertion of insert into backbone
- Considerations when choosing restriction enzymes:
 - Do you have access to the enzymes? WI Ki
 - Are the two enzymes compatible? -NES
 - Are the resulting fragments easily distinguished on an agarose gel?

For today

- Complete cloning and generate plasmid map of pdCas9
- Set up confirmation digest of pdCas9 based on plasmid map
 - Begin by 4:30pm
 - Printed maps available at front bench if needed

For M2D2

- Select article for Journal Club
- Sign up on wiki using instructions on the sign up page
 - Only one person per section can sign up for an article
 - First come first serve
- Write summary of why article is interesting, based on abstract and introduction