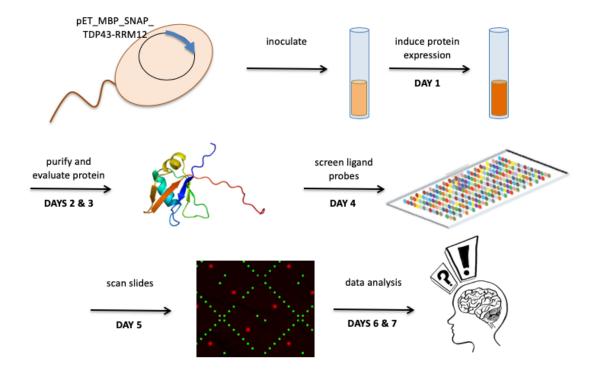
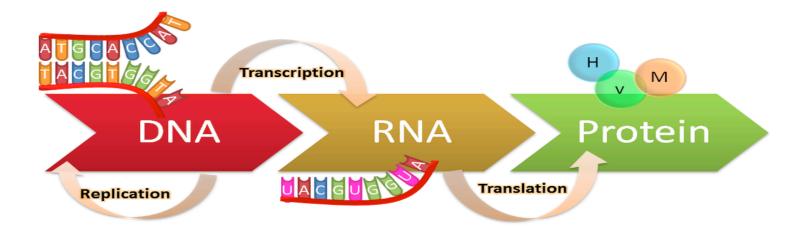
M1D1:

Complete *in silico* cloning and confirmation digest of protein expression vector

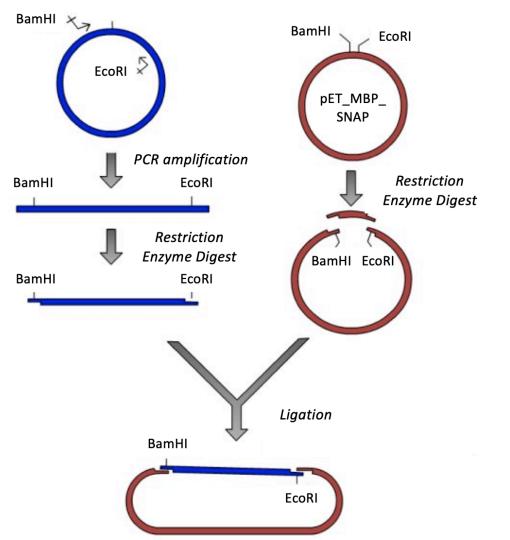

- 1. Laboratory Orientation quiz
- 2. Prelab discussion
- 3. Build protein expression vector virtually
- 4. Confirm protein expression vector actually

Mark your calendars!

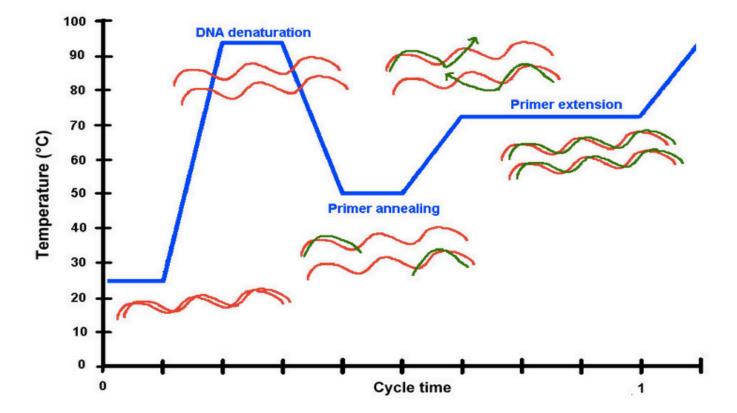

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 3/8, final revision due 3/22
 - format in bullet points
- Mini-presentation (5%)
 - completed individually and submitted via Gmail
 - due 3/15
- Laboratory quizzes
 - scheduled for M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - one entry will be graded by Kevin 24 hr after M1D7
- Blog (part of 5% Participation)
 - due 3/16 via Blogspot

Overview of Mod 1 experiments

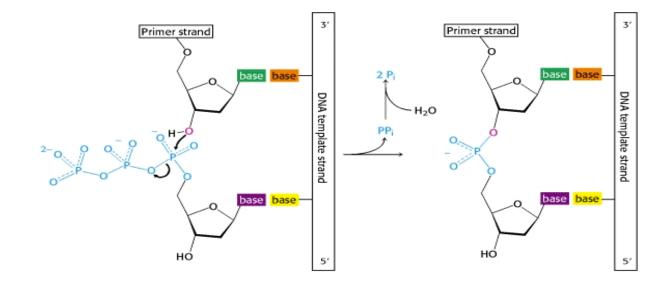
How are proteins made?


http://genius.com/Biology-genius-the-central-dogma-annotated

What if we want specific protein?


• Amplification

• Digestion


• Ligation

Amplification: PCR cycling

Amplification: DNA polymerase

- Catalyzes formation of polynucleotide chains
- Requires a primer base-paired to template

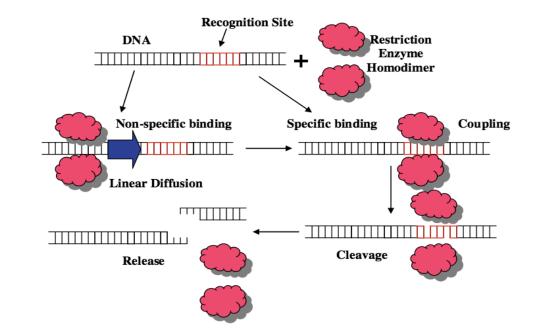
http://www.ncbi.nlm.nih.gov/books/NBK22374/

PCR reagents and conditions

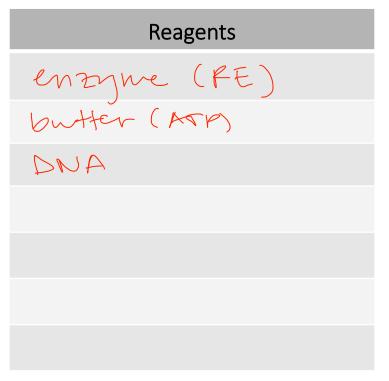
A closer look at primer design

• Length: 17-28 bp

• GC content: 40-60 %


• Tm : < 65 °C

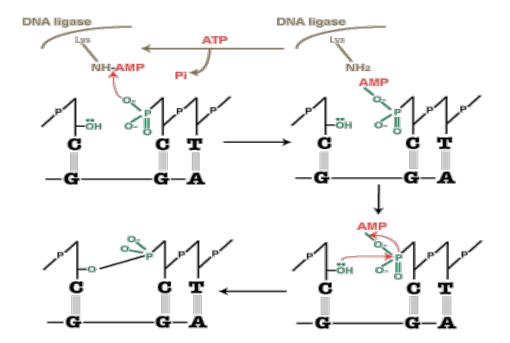
Avoid secondary structure and repeat sequences


primer : priner bindig

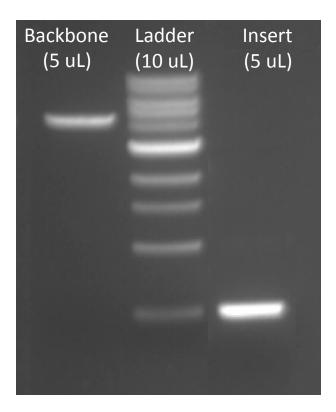
Digestion: restriction enzymes

- Function as homodimers
 - Each dimer cleaves backbone at site of palindromic recognition sequence

Digest reagents and conditions



• Temperature


• Time

Ligation: T4 DNA ligase

- Forms covalent phosphodiester bond between 3' OH acceptor and 5' phosphate donor
- Requires ATP

Ligation conditions

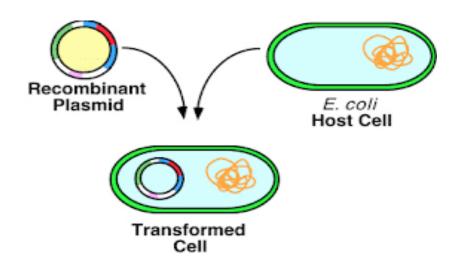
Kilobases Mass (ng)

- 10.0 42 42 8.0 6.0 50 42 5.0 - 4.0 33 - 3.0 125 - 2.0 48 - 1.5 36 - 1.0 42 - 0.5 42
- Ideally, want 4:1
 molar ratio of insert:backbone
- Calculate molar amounts from concentrations and sizes of DNA molecules

Ligation calculations

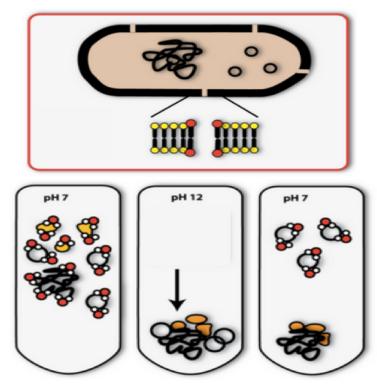
- 1. Determine volume of backbone
 - Use backbone concentration = 50 ng/uL
 - Want 50 100 ng
- 2. Calculate moles of backbone
 - Vector = **6837** bp, MW bp = 660 g/mol
- 3. Calculate moles of insert
 - Insert = 527 bp, 3:1 ratio of insert:backbone
- 4. Calculate volume of insert
 - Use insert concentration = 20 ng/uL

How do we confirm the product?


• Transformation

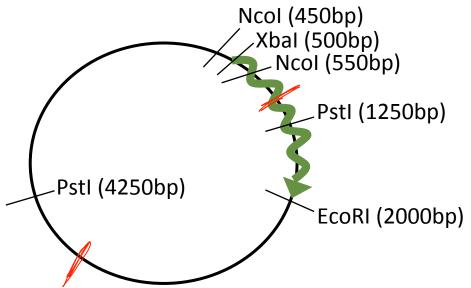
• Purification

BamHI EcoRI BamHI **EcoRI** Ligation BamHI EcoRI


• Digestion

Transformation

- 1. Incubation
- 2. Heat shock
 - DNA taken in by competent cells
- 3. Recovery
- 4. Selection


Purification

- 1. Resuspend cells
- 2. Lysis
- 3. Neutralization
 - Separates chromosomal DNA from plasmid DNA
- 4. Wash
- 5. Resuspend or elute DNA

Digestion, again

- Confirmation digests
- Ideally, will cut once in insert and once in vector
 - Xbal and EcoRI?
 - Pstl?
 - Ncol?

pNLL-PCR (6000bp)

What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Incomplete
Date of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations	2	1	0
*Visual details			
*Qualitative information			
*Raw data			
Data analysis	3	1.5	0
*Calculations			
*Graphs and Tables			
Summary and interpretation of data	3	1.5	0
*What did you learn?			
*How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	1	0.5	0

OVERALL /15

How should you format your notebook?

Insert \vee H \vee B I U \oplus \oplus A \vee x₂ x² \equiv \equiv \equiv More \vee

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes.
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(S20)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder
- Share the project with Noreen and Kevin
 - Right-click and choose 'settings'
 - Add collaborators by email

For today...

- Virtual cloning exercise to build pET_MBP_SNAP_TDP43-RRM12 expression plasmid
- Confirmation digest of pET_MBP_SNAP_TDP43-RRM12

For M1D2...

- Prepare a template for Benchling entries
- Complete in class exercises