
M1D6: Image and analyze high-throughput genome damage assay

- 1. Prelab
- 2. Use python to examine your CometChip data
- 3. Analyze CometChip data set to examine DNA damage repair

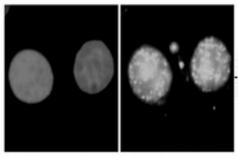
Homework

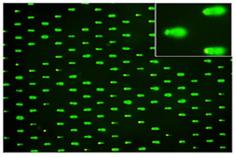
Prepare for Implications and Future Works

Answer questions to prepare for Implications and Future Works section

- What is the main conclusion for your γ-H2AX results?
 What is the main conclusion CometChip results?
 How do the results answer your research question?
 Did you observe any unexpected results or contradictory results?
 What follow-up experiments (include at least two!) would be helpful in further addressing your research question?
 - Follow up experiments can clarify results
 - Follow up experiments can build on results

Labwork


Analyze CometChip data

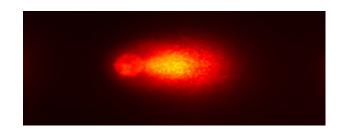

Mod1 Overview

Last lab:

This lab:

Next lab:

- 1. Use repair foci experiment to measure DNA breaks
- Examine effect of H_2O_2 +/- As on double strand DNA breaks by measuring γ H2AX foci formation

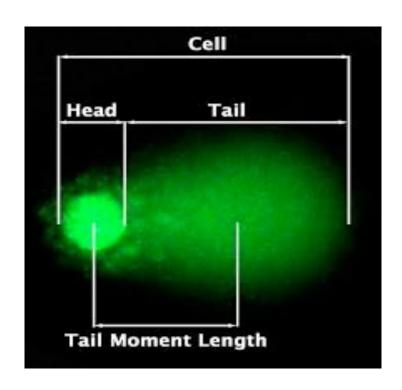

- 2. Use high-throughput genome damage assay to measure DNA damage
- Measure effects of H₂O₂ +/- As on DNA damage by measuring DNA migration in agarose matrix

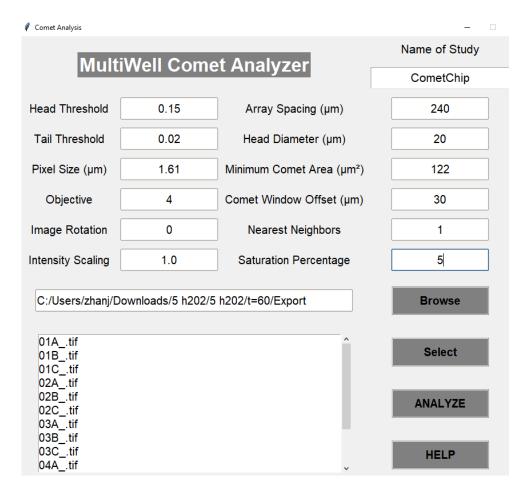
Overview of CometChip Assay: chemically treating cells and visualization

Treat captured cells in comet chip with H₂O₂ and As Agarose Electrophoresis Lyse cells & unwind DNA (DNA still captured agarose in overlay) **Analysis** via Stain DNA and image via python fluorescence microscopy

Output of the alkaline CometChip assay

No Damage

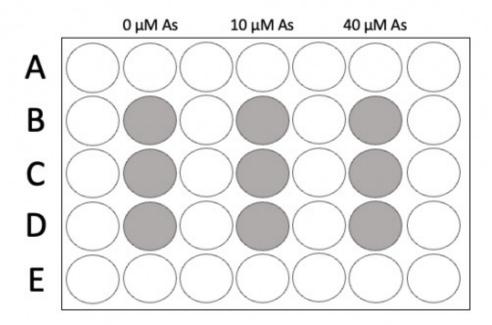

- Supercoiled nucleoid
- Little or no migration


High Damage

- SSBs, DSBs, abasic sites, alkali labile sites, sites of incomplete excision repair
- Forms a "comet tail"

- * Nuclear DNA normally supercoiled
 - * DNA breaks and fragmentation releases tension
 - * Unwound DNA will migrate in response to electrical current to create comet

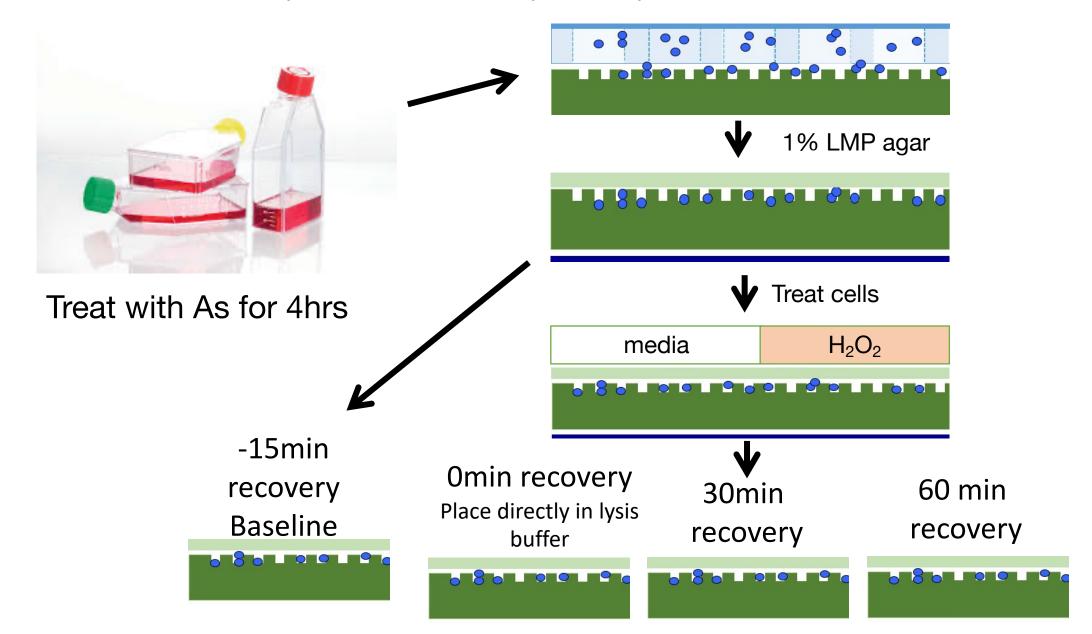
How will you assess and analyze CometChip data?



- Assess comet images with python code
 - Recommended parameters capture tail features

Identifying and processing CometChip images

- The naming scheme is similar to H2AX data image names
 - Each macrowell is an individual image
 - 0H40A_001
- Use Excel to analyze compiled CometChip data
 - Percent Head DNA
 - Percent Tail DNA
 - OTM

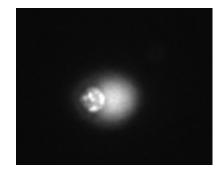


- First sheet will have summary of each image
 - Subsequent sheets will show numbers for each comet measured
- Graph % Tail DNA for Data Summary

How can CometChip be used in the lab beyond your experiment?

- High throughput compared to yH2AX assay
 - H2AX: image data coverslip by coverslip
 - CometChip: image well by well on a large gel
- Comet Chip can be loaded with the same cell population and then divided into different treatment conditions
 - Do a dose-response curve for different concentrations of arsenic
 - Do a timecourse to examine repair kinetics following DNA damage
- You will analyze data from a timecourse with multiple [arsenic] for the Data Summary

Overview of the repair CometChip assay



Examine CometChip images for visual examples to include in Data Summary Figure

- Can use example individual comets for each condition
- Pull them out of ImageJ

No Treatment

 $40uM As + 10uM H_2O_2$

For Today

- 1. Use python to analyze comets from CometChip experiments
- 2. Analyze repair CometChip data from linked Excel sheet
- 3. Begin work on Data Summary

For M1D7

- Answer the Homework questions to frame your Implications & Future Works section for the Data Summary
- With your lab partner, revise your methods draft and add methods for M1D3