20.109 Laboratory Fundamentals in Biological Engineering

Module 1
Nucleic Acid Engineering
Lecture 4

Office hours: by appt.

DNA engineering: investigating host/ microbe relationships

Module 1

What is cloning

- A brief history
- Choice of vector
- Creation of recombinant DNA
- Creation of transgenic bacteria
- Selection for the clones you're looking for

Module 1

Calculation of the UniFrac distance metric

Sequence analysis

- 3 major axes:
- 1) Alpha and beta diversity
- 2) Qualitative or quantitative
- 3) Phylogeny or taxon based

• Genome size

Bacteria0.5-10 Mb

Viruses
 1-1000 Kb

Eukaryotic10-50 Mb

Number of taxa

- Bacteria: Thousands

– Viruses: unknown

- Eukaryotes: unknown - likely fewer

Relative abundance

- Bacteria: Variable

– Viruses: Variable

- Eukaryotes: unknown, likely variable

Ways to target

- Bacteria: 55 and 165 rRNA

- Viruses: Specific PCR

- Eukaryotes: 185 or ITS rRNA region

Sequence variation

– Bacteria: Modest + HGT

– Viruses: High

– Eukaryotes: unknown

Back to the core questions

What do we know?

How does it go awry?

How might we possibly fix/engineer it?

Models of a core microbiome

The microbiome is diverse and variable

The microbiome is diverse and variable

The microbiome is diverse and variable = small core biome?

Lachnospiraceae

Models of a core microbiome

If taxonomy is not conserved, what does that mean for function?

- Functional core?
- Interchangeable parts?

Comparison of taxonomic and functional variations

Phylum Function

Nature 486 (2012)