Thursday, May 18th, 4pm in 32-141:

Prof. Leona Samson presents to the BE department

M3D5: Battery assembly and testing

05/09/2017

The final countdown...

- Lab notebook entry
 - M3D3 graded by Rob at 10pm tonight
- No lecture Thursday
- M3 research proposal
 - slides due on Gradebook Module Thursday, May 11th at 1pm
 - bring one print-out of your slides to 16-336
- Blog post
 - due Thursday, May 11th
- M3 mini-report
 - due at 10pm Tuesday, May 16th
 - (background + overall approach), TEM images, elemental map (spectrum), charge/discharge plot, capacity value, class-wide data analysis

Module 3 overview: biomaterials engineering

Figure: TEM images

- at low magnification:
 - extent of biomineralization
 - distribution of gold
 - overall structure & density
 - uniformity
 - length of nanowires

- at high magnification:
 - size of gold nanoparticles
 - lattice of gold atoms (i.e. 111)
 - amorphous vs. crystal Fe(III)PO₄
 - diameter of nanowires

Figure: EDX elemental mapping

- expected: Fe, P, O, Au, (Cu)
 - contamination? Na, Cl, K, Ca (from diH₂O)
 - Si
 - stocchiometrie ratios?

keV (energy)

Element	Atornic%
CK	55,01
OK	22.88
PΚ	5.04
Cl K	0.24
K K	0.16
Ca K	0.77
Fe K	5.46
Cu K	9.34
Au L	0.79
Totals	

Today: Battery assembly

from bottom up

Result / figure: Battery capacity

- Theoretical capacity of Li – LiFe(II)PO4 battery:
 178 mA*h/g
- Practically
 - analyze cycling data
 - summary by Jifa in .csv

Galvanostat:

- keep current constant (- 17.8 mA/g for 10h discharge)
- record voltage (ideally constant)
- as charge (capacity) stored in battery fluctuates (drops during discharge)

column F "step" = 2 look for 2nd or 3rd cycle

Battery capacity calculation

					*		
	A	В	С	D	2	during discharge (step 2)	
1	Time	Voltage (V)	Current (A)	Charge (Ah)	Capacity (Ah/g)		
_				,			
2	00:01.0	3.086303711	-0.000000005	-2E-12		M = max capacity	
3	00:02.0	3.086791992	-0.000000006	-3E-12		m = min capacity	
4	00:03.0	3.087158203	-0.000000005	-5E-12			
5	00:04.0	3.087524414	-0.000000004	-6E-12		battery capacity = M -	m
6	00:05.0	3.087890625	-0.000000005	-7E-12			
7	00:06.0	3.088256836	-0.000000005	-8E-12			

- Ensure capacity units are A*h/g
- Remember cathode is (in weight)
 - 70% active material: 63% Fe(III)PO₄ + 7% phage
 - 25% Super P carbon
 - 5% PTFE binder

Does gold quantity affect battery capacity?

- Use class-wide data
 - .csv from Jifa for all capacities
 - M3 main Discussion page for AuNP quantity

post your team's capacity values on the wiki: M3 main Discussion page

Today in lab:

- Demo in Belcher Lab
- Refine your M3 research proposal