M1D3: Assess purity and concentration of purified protein

- 1. Comm Lab workshop
- 2. Prelab discussion
- 3. Concentrate purified protein sample
- 4. Visualize MAX-6xHis purity
- 5. Measure MAX-6xHis concentration

Let's review the protein purification steps...

- Added lysonase to what? why? Added DNasel to what? why?
- Centrifuged what? why?
- Incubated with nickel resin why?
- Washed with low concentration imidazole why?
- Eluted with high concentration imidazole why?

Overview of Mod 1 experiments:

First, you will concentrate your purified protein

- Filter device sits within centrifuge tube...add protein to filter device for centrifugation
- Filter device has MW cutoff of 10 kDa ...**protein is retained in the filter device** during centrifugation
- How does this concentrate the protein?

How will you assess the quality of your protein?

- Check purity using SDS-PAGE
 - Visual detection of all proteins in sample
 - Used to assess purity / quality
- Measure concentration using BCA assay
 - Quantitative measure of all proteins in the sample
 - Used to calculate concentration

Purity: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

- Laemmli sample buffer (loading dye):
 - sodium dodecyl sulfate (SDS)
 - β-mercaptoethanol (BME)
 - bromophenol blue
 - glycerol
- Boiling:

How are proteins separated?

- Electrophoresis completed in TGS buffer
 - Tris-HCl
 - SDS
 - Glycine
- How does adding Laemmli buffer and boiling change protein structure?
- What determines how far a protein migrates in the gel?

Be mindful when loading protein samples!

- Consider the order of your samples:
 - Pellet
 - Lysate
 - Flowthrough
 - Wash
 - Concentrated MAX-6xHis
 - Slurry
 - Ladder

• Figure for these results will be included in your Data summary!

How are proteins visualized?

- Coomassie dye used to stain protein bands
 - Hydrophobic and electrostatic interactions with basic residues
 - Arg (also His, Lys, Phe, Trp)

- How will you know which band corresponds to MAX-6xHis?
- How does SDS-PAGE provide information regarding the purity of your protein sample?

What are the expected results? (Ideal/Practical)

- Where do you / do you not expect to see MAX-6xHis? Why / why not?
- Where do you expect to see other cellular proteins?
- How will the elution sample differ from the concentrated protein sample?

Concentration: Bicinchoninic acid (BCA) protein assay

Step 1: Biuret reaction; chelation of copper with protein, reduction of copper

BCA/Cu¹⁺ absorbance proportional to protein concentration

- Standard curve generated using serial dilutions of bovine serum albumin (BSA)
 - Use fresh tips between tubes
 - Mix well between dilutions
 - Be sure to add correct volumes
- Is the calculated concentration an accurate measure of the amount of MAX-6xHis in your sample?

Protein concentration (µg/mL)

For today...

- Divide experiments between partners to ensure work is completed during class time
 - Be sure to share data / results!

For M1D4...

- Read journal article for in-class discussion
- Be sure to have your name on your homeworks themselves, not just the file name!
- Draft outline of Background & Motivation for bonus feedback