Last time:

- Choose the right distance metric to compare the expression of two genes
- Describe why you would cluster expression by genes or experiments
- Manually cluster small vectors using hierarchical or k-means clustering
- Read a dendogram
- Describe the results of Principal Component Analysis (PCA)

Last time

Find Similar Genes

Find Similar Conditions

Today

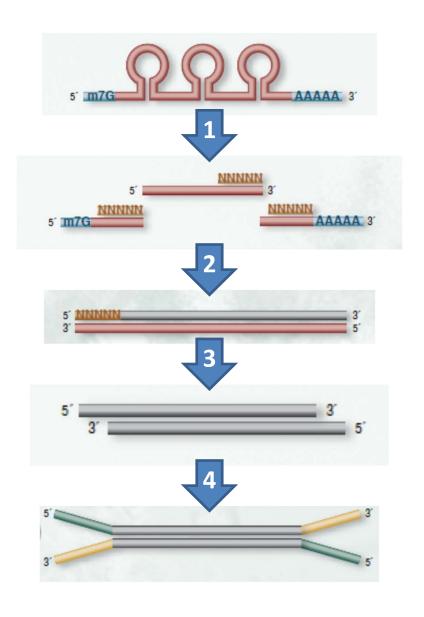
RNA-Seq

Find Changes in Expression

Find
Functions of
Genes of
Interest

Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance



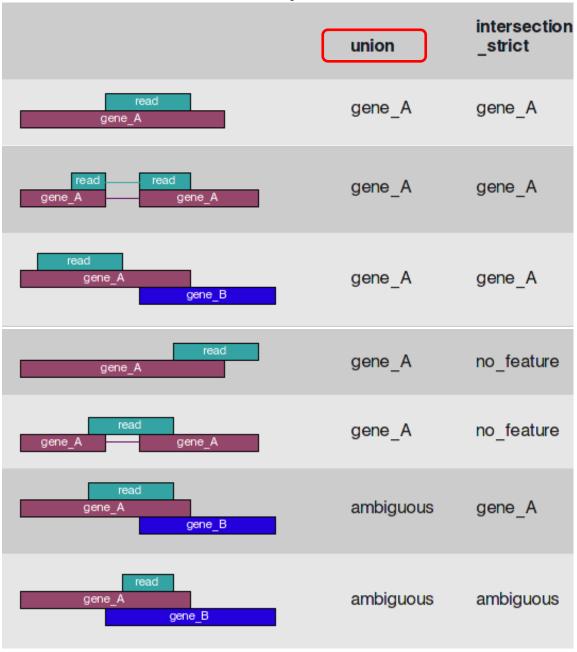
1. Fragment RNA and prime with random DNA primers

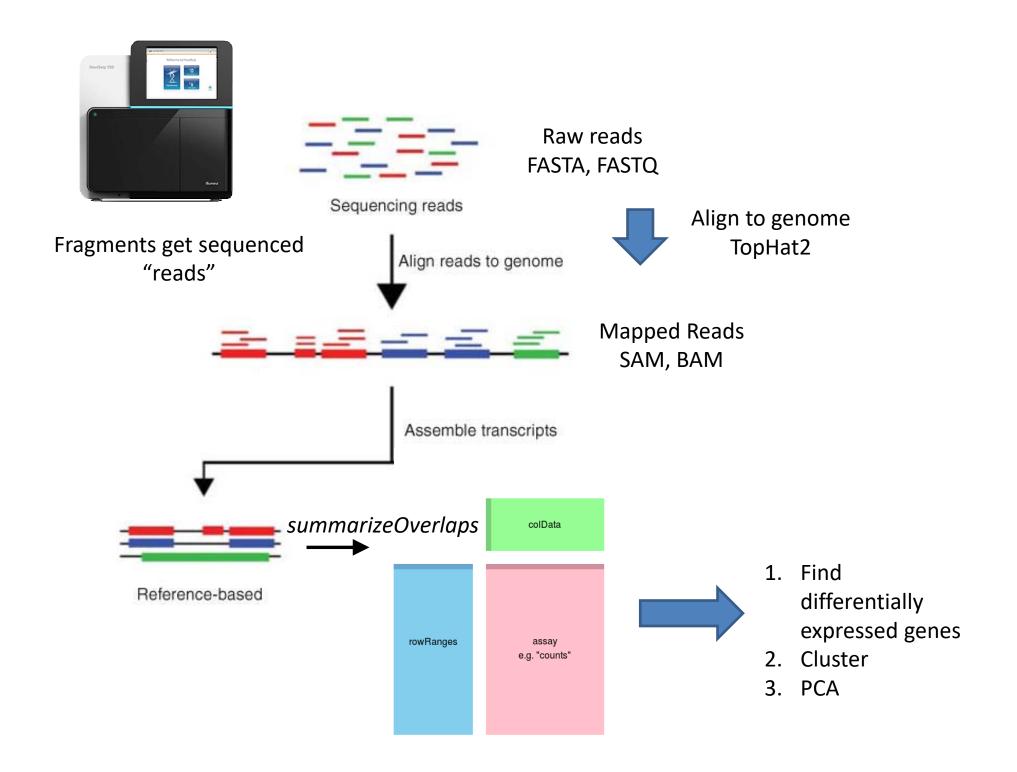
Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

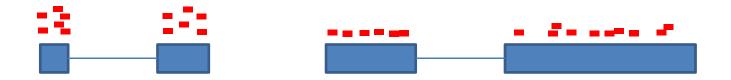
When reads overlap more than one exon

"Union" is the default mode





Raw counts are misleading



- 1. A long transcript with a low level of expression will still produce more sequence reads than a short, highly expressed transcript.
- 2. An experiment that is sequenced more deeply will make all genes appear to be expressed at higher levels

To correct for this, we use "Reads per Kilobase Million (RPKM)"

Gene	Length in KB	Replicate 1	Replicate 2	Replicate 3
Α	2	1.0E6	1.2E6	3.0E6
В	4	2.0E6	2.5E6	6.0E6
С	10	0	0	1.0E5

Raw reads

1. Count the number of reads in each sample in millions.

Reads	Α	0.333	0.324	0.330
per	В	0.667	0.676	0.659
million	С	0	0	0.011

Reads per		Replicate 1	Replicate 2	Replicate 3
kilobase	А	0.167	0.162	0.165
million	В	0.167	0.169	0.165
RPKM	С	0.00	0.00	0.001

Gene	Length in KB	Replicate 1	Replicate 2	Replicate 3
Α	2	1.0E6	1.2E6	3.0E6
В	4	2.0E6	2.5E6	6.0E6
С	10	0	0	1.0E5

Reads		
per		
million		

Α	0.333	0.324	0.330
В	0.667	0.676	0.659
С	0	0	0.011

This step corrects for
sequencing depth.
Note that numbers are
now more consistent
across replicates

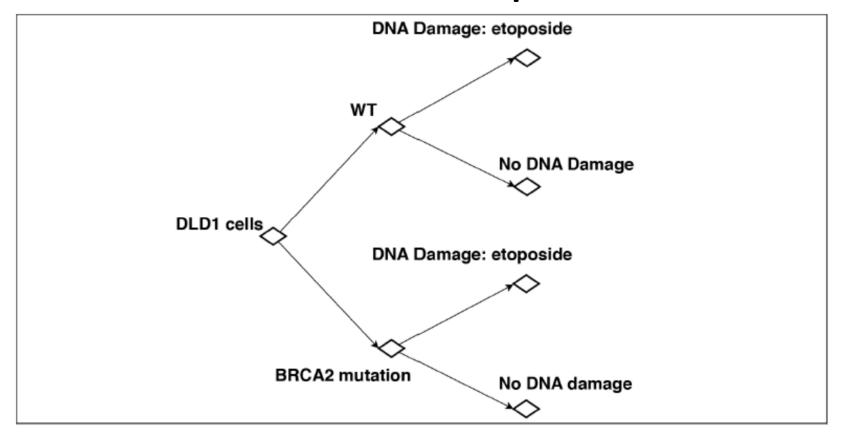
Reads
per
kilobase
million
RPKM

	Replicate 1	Replicate 2	Replicate 3
Α	0.167	0.162	0.165
В	0.167	0.169	0.165
С	0.00	0.00	0.001

This step corrects for gene length.

Note that genes A and B have similar RPKMs but very different raw read counts.

Differential expression

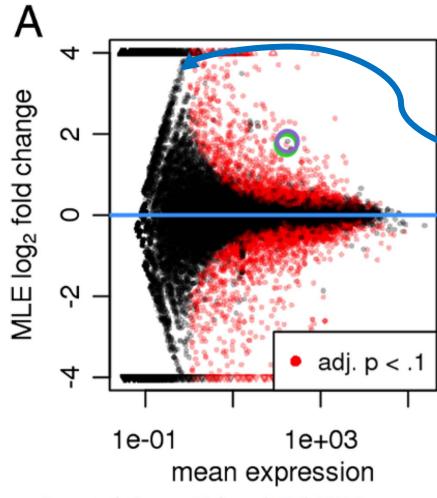


Unfortunately, we can't just compare RPKM values across conditions.

Random sampling errors will produce different values even for genes that are expressed at a constant level.

Heteroskedasticity

variance of LFCs depends on the mean



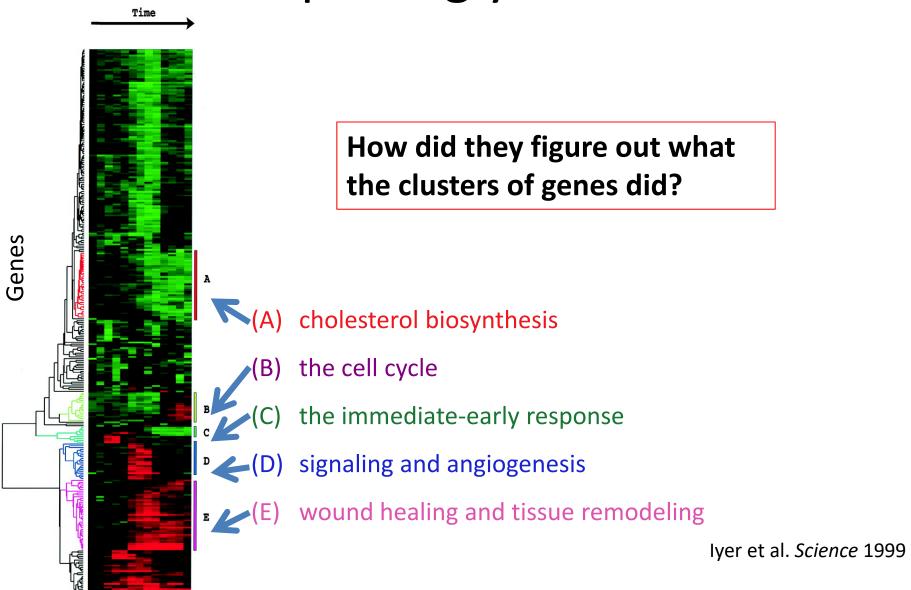
Love et al. Genome Biology (2014) 15:550

- Why are large fold-changes so common for poorly expressed genes?
- Ratios with small numbers are always more noisy.
- Transforming the data can reduce this bias.
- DESeq2 uses something called a regularized logarithm transformation (rlog).

Do your data make sense?

- Technical replicates should be very similar (R^2 > .9)
- Biological replicates should cluster together

Interpreting your results



Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

Biological Insights

What types of genes are being differentially expressed?

http://www.geneontology.org

Controlled vocabulary to describe genes:

- Biological process
- Cellular component
- Molecular function

- Biological process
 - signal transduction; glucose tranport
- Cellular component
 - nucleus; ribosome; protein dimer
- Molecular function
 - binding; transporter

Biological process

- A series of events accomplished by one or more ordered assemblies of molecular functions.
- Examples of broad biological process terms are cellular physiological process or signal transduction.
- A process should have at least two distinct steps.

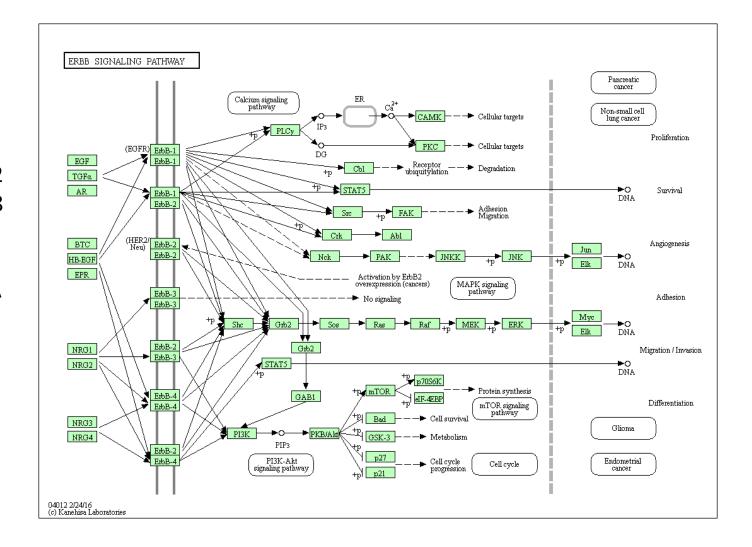
Biological process

- A biological process is not equivalent to a pathway.
 - Does not represent the dynamics or dependencies of a pathway.

GO

BTC	NRAS
CDC37	NRG1
Cpne3	NRG2
CPNE3	NRG4
CUL5	PIK3CA
EGF	PIK3R1
EGFR	PRKCA
ERBB2	PTK6
ERBB3	PTPN12
ERBB4	PTPN18
ERBIN	Ptprr
EREG	PTPRR
GAB1	RPS27A
GRB2	SHC1
GRB7	SOS1
HBEGF	SRC
HRAS	STUB1
HSP90AA1	Symbol
KRAS	UBA52
MATK	UBB
Myoc	UBC
MYOC	

KEGG Pathway



Cellular component

- Part of a
 - anatomical structure (e.g. rough endoplasmic reticulum or nucleus) or a
 - gene product group (e.g. ribosome, proteasome or a protein dimer).

Molecular function

 Molecular function describes activities, such as catalytic or binding activities, that occur at the molecular level.

Examples:

- Broad: catalytic activity, transporter activity, or binding
- Narrow: adenylate cyclase activity or Toll receptor binding.

Downloads

Tools

Documentation

Estrogen receptor

About

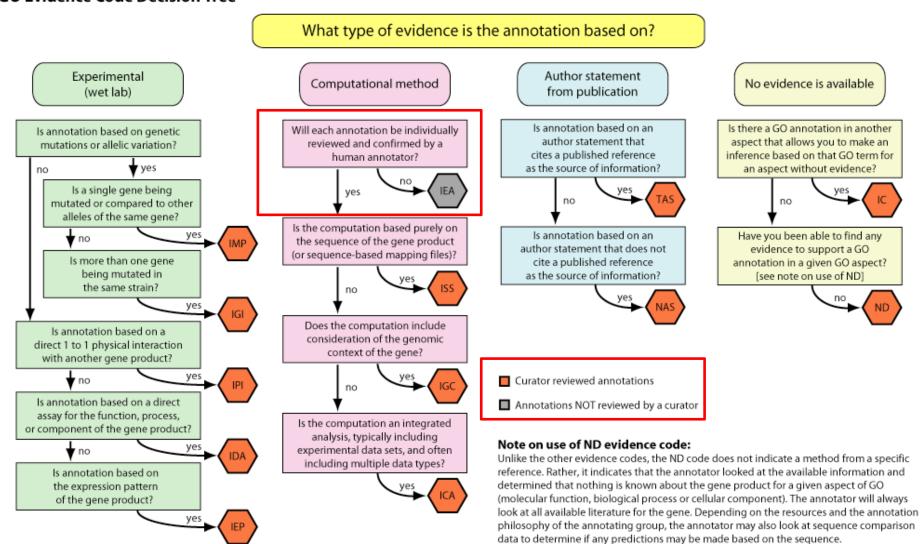
Contact

Projects

Search			
gene or p	rotein name	*	go!

✓ Go! Perform an action with this page's selected terms.. Select all Ontology Qualifier Evidence Accession, Term G0:0030520: estrogen receptor signaling pathway 41 gene products biological NAS view in tree process ☐ GO:0043526 neuroprotection Not just the 67 gene products biological With Ensembl:ENSRNOP00000026350 view in tree process obvious categories 9 gene products biological IDA GO:0048386: positive regulation of retinoic acid receptor signaling pathway view in tree process 56 gene products biological GO:0045885: positive regulation of survival gene product expression IEA view in tree process With Ensembl: ENSRNOP00000026350 GO:0006355: regulation of transcription, DNA-dependent 16904 gene products biological NAS view in tree process 354 gene products biological GO:0043627: response to estrogen stimulus With Ensembl:ENSRNOP00000026350 view in tree process ☐ GO:0007165 : signal transduction 18490 gene products biological TAS view in tree process TAS

GO Evidence Code Decision Tree



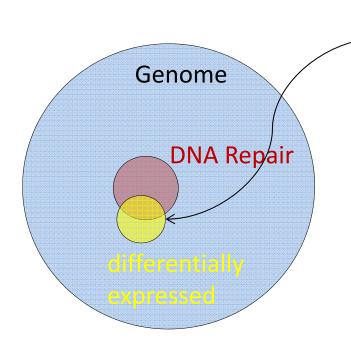
Tools

http://www.geneontology.org/GO.tools.shtml

Outline

- Overview of the steps of RNA-Seq
- Deriving expression levels from sequence data
- Gene Ontology
- Statistical significance

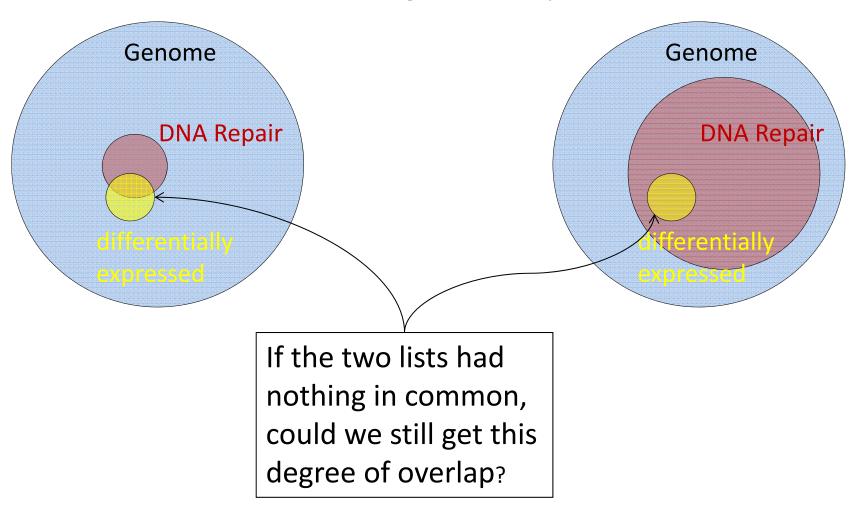
 I found that ten of the upregulated genes in my dataset are annotated as "DNA Repair" ...

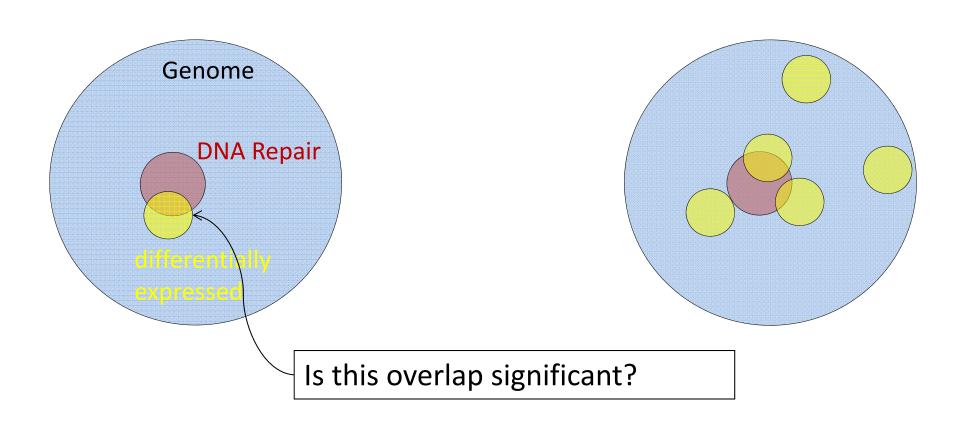


Is this overlap significant?

To answer this question we need a null model.

The significance depends on the size of the lists.





Genome

DNA Repair

differentially

expressed

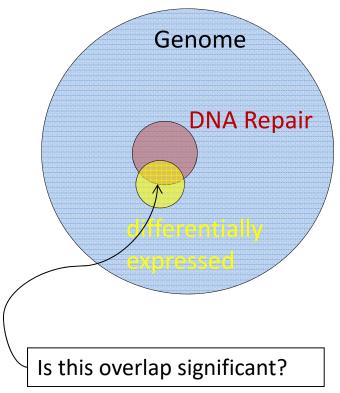
P(C)

The probability of getting **exactly** this amount of overlap for two randomly chosen sets of genes of the same size is given by the hypergeometric distribution:

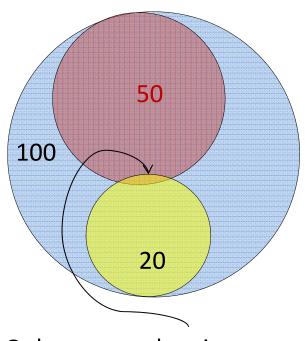
$$P(Overlap) = \frac{\begin{pmatrix} DNA\ repair \\ Overlap \end{pmatrix} \begin{pmatrix} Genome - DNA\ repair \\ DiffExp - Overlap \end{pmatrix}}{\begin{pmatrix} Genome \\ DiffExp \end{pmatrix}}$$
Is this overlap significant?

Recall that $\left(\frac{n}{k}\right)$ ("n choose k") is the binomial coefficient.

= the number of ways to choose k items from a set of n.



- The hypergeometric gives the probability of getting exactly this amount of overlap for two randomly chosen sets of genes of the same size.
- But that's not exactly what we need to know.
- We wish to test if a term is "enriched" in our data.
- Do we see <u>more</u> of a term than we would expect in the null model?

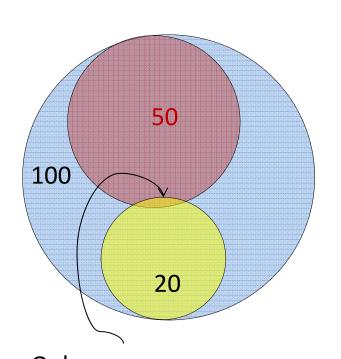


Only one overlapping gene.

In this case at left, the p-value for an overlap of exactly one is 0.000003.

In fact, you would expect to see a larger overlap under the null model.

P-value
0.000003
0.00004
0.0004
0.002
0.009
0.02
0.07
0.12
0.17
0.2



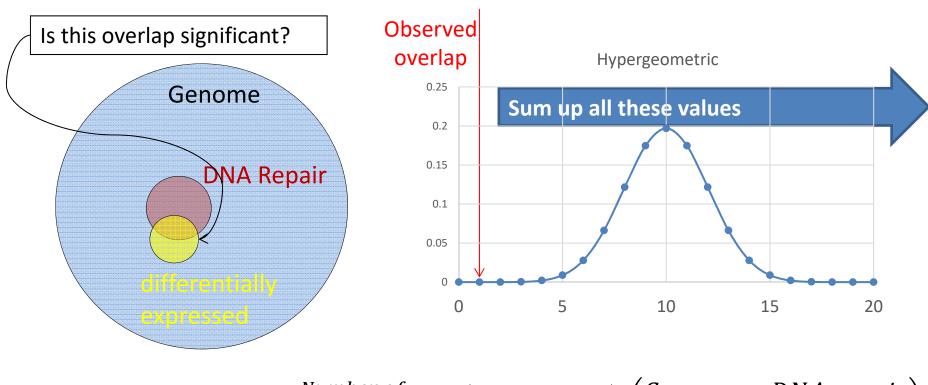
To determine if we see **more** of a term than we would expect in the null model, we compute the cumulative distribution function.

Only one overlapping gene.

$$P(overlap = 1) = 0.000003$$

 $P(overlap >= 1) = 0.999997$

Overlap	P-value
0	9E-8
1	0.000003
2	0.00004
3	0.0004
4	0.002
5	0.009
6	0.02
7	0.07
8	0.12
9	0.17
10	0.2

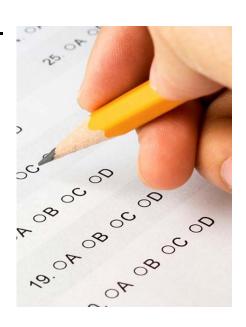


$$CDF(Overlap) = \sum_{n=overlap}^{Number\ of} \frac{\binom{DNA\ repair}{n}\binom{Genome-DNA\ repair}{DiffExp-n}}{\binom{Genome}{DiffExp}}$$

CDF=Cumulative distribution function

Multiple Hypotheses

- Let's imagine we test each GO term using the hypergeometric distribution, each time filtering with a p-value of 0.01
- From the definition of the p-value, we expect that the null-hypothesis has a 1% probability of being correct *for each test*.
- There are roughly 30,000 terms in GO.
- At this level, we expect roughly 300 false positives!



Multiple Hypotheses

- A simple solution: require that the p-value be small enough to reduce the false positives to the desired level.
- This is called the Bonferroni correction.
- In our case, we would only accept terms with a

$$p \le \frac{0.01}{30,000} = \frac{desired\ threshold}{number\ of\ tests}$$

- Since our tests are not all independent, this is very conservative, and will miss many true positives
- More sophisticated approaches exist, such as controlling the "false discovery rate".

P-values don't mean what you think!

The ASA's Statement on p-Values: Context, Process, and Purpose

The American Statistician, 70:2, 129-133, DOI: 10.1080/00031305.2016.1154108

- P-values can indicate how incompatible the data are with a specified statistical model.
- P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
- A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.