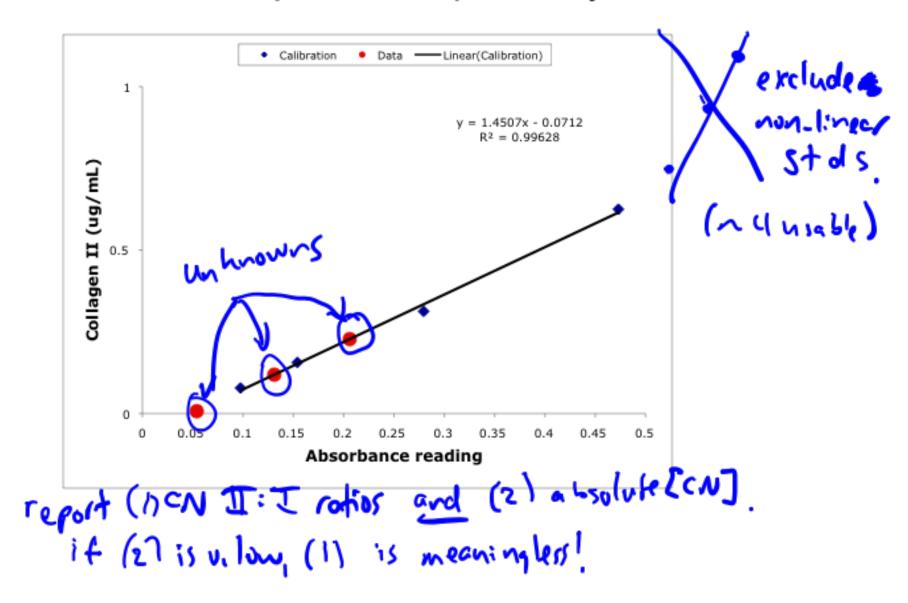
- Announcements (logistics)
- Wrap-up comments (conceptual)

Announcements – class schedule


- Today: M3 report due; also finish clean-up, fill out WAC evaluations and reflection survey
- Presentations May 14th/15th
 - in room 16-336, starting at 1:30 pm
- Plan for Thursday, May 16th
 - Meet in **56-614**!
 - ~11-11:30: give collaborative feedback about class
 - ~11:30-1: party (RSVP for food please)
- Don't forget final reflection assignment!

Assignment return schedule

- M1 primer design summary: Monday 13th (*)
- M3 mini-report: Monday 13th (*)
- M3 proposals: Monday 20th (*)
- M2 report, and comment on M1/M2 writing reflections: Monday 20th, evening
- Quiz, ntbk, FNT averages ready today or tomorrow (final W/F scores coming in)

(*) = possibly sooner, but no promises ☺

ELISA (and PG) analysis

Module 3 proposal expectations

- Reminder: rubric is online (Assignments page)
- Specify a question and experiments to address it and schonlific context
- Make clear what novel aspect(s) is
- "Typical" strong talk:
 - 1 slide (perhaps over title slide) overview
 - 2-5 slides background/prev work
 - 1-2 slides goal/plan specific experimental aims
 - 4-7 slides methods/outcomes
 - 1 slide alternatives (or w/in methods/outcomes)
 - 1 slide resources
 - 1-2 slides summary, impact, and future work
 - ultimately, lengths are very project dependent!
- Going too "paint-by-numbers" can backfire. If guidelines don't encompass your particular project well, use your judgment.

Module 3 report expectations

- Guiding Q: what do we need to know to understand, repeat, and evaluate your experiment, given OWW access?
 - Experimental plan: alginate (type/%), cells (type/#)
 - Cell recovery, amount and quality of RNA, qPCR anomalies
 - Comments on replicate agreement
 - Above is not an exhaustive list!
- What we're ultimately looking for: your analytical skills on display, with whatever data you have to work with
 - Do you understand the purpose of each assay?
 - Do you thoroughly analyze and interpret each assay? (Both what is seen and why it may be the case.)
 - Do you integrate results for a holistic view, or treat each independently with no coherent narrative?
 - What if transcript and protein level assays are different?
 Consider both technical/experimental and scientific/ biological reasons for this outcome.