Phylogenetic reconstruction

Produce a phylogenetic tree -

Describing likely descent from a common ancestral sequence of a set of aligned contemporary sequence.

How many rooted and unrooted possibilities are there?

Number of OTUs	# rooted trees	# unrooted trees
2	1	1
3	3	1
4	15	3
5	105	15
6	954	105
7	10,395	954
8	135,135	10,395
9	2,027,025	135,135
10	34,459,425	2,027,025

Optimality criteria

Neighbor - joining (NJ)

- Finds pairs of taxa that minimize internal branch length, resulting in the shortest tree
- Distance-based tree reconstruction method
- Pros: quick, quick and quick
- Cons: problematic when sequences are divergent & involve many gaps

 Input: matrix based on pairwise distance (d) between each pair of taxa (i)

	А	В	С	D	Е
A		0.1715	0.2147	0.3091	0.2326
В			0.2991	0.3399	0.2058
С				0.2795	0.3943
D					0.4289
E					

Step 1: convert pairwise distances to net divergence (r_i) using the formula: $r_i = \sum d_{ij}$

	А	В	С	D	Е	r
А		0.1715	0.2147	0.3091	0.2326	0.9279
В			0.2991	0.3399	0.2058	1.0163
С			-	0.2795	0.3943	1.1876
D				-	0.4289	1.3574
E					-	1.2616

Step 2: calculate rate-corrected distance matrix (M) using: $M_{ij}=d_{ij}-[r_i+r_j]/(N-2)$

	А	В	С	D	Е	r
А		0.1715	0.2147	0.3091	0.2326	0.9279
В	-0.4766	-	0.2991	0.3399	0.2058	1.0163
С	-0.4905	-0.4356	-	0.2795	0.3943	1.1876
D	-0.4527	-0.4514	-0.5689	-	0.4289	1.3574
E	-0.4972	-0.5535	-0.4221	-0.4441	-	1.2616

Step 3: choose as neighbors the pairs with the smallest M_{ij} and call node Y

	А	В	С	D	E	r	
А		0.1715	0.2147	0.3091	0.2326	0.9279	
В	-0.4766	-	0.2991	0.3399	0.2058	1.0163	
С	-0.4905	-0.4356	-	0.2795	0.3943	1.1876	This is C & D!
D	-0.4527	-0.4514	-0.5689	_	0.4289	1.3574	C & D:
E	-0.4972	-0.5535	-0.4221	-0.4441	-	1.2616	

Step 4: Introduce first internal branch & calculate length of new tree

Nature Reviews | Genetics

Step 5: Calculate new distances between node Y and other terminal nodes

Step 6: Create a rate-corrected matrix (M) where N is now equal to 4:

	Α	В	E	Υ	r
А	-	0.1715	0.2326	0.1222	0.5263
В	-0.3701	-	0.2058	0.1798	0.5571
Е	-0.3856	-0.4278	-	0.2719	0.3551
Υ	-0.4278	-0.3856	-0.3701	-	0.5739

Step 7: Choose the taxa with the lowest distance to Y...that would be A

	Α	В	Е	Υ	r
А	-	0.1715	0.2326	0.1222	0.5263
В	-0.3701	-	0.2058	0.1798	0.5571
E	-0.3856	-0.4278	-	0.2719	0.3551
Υ	-0.4278	-0.3856	-0.3701	-	0.5739

This is A!

Step 8: Sequentially introduce pairs of taxa that result in shortest tree...

Assessing confidence

Assessing confidence

- Trees obtained by phylogenetics are subject to error like all other scientific hypotheses
- A tree will be generated regardless of whether there is a phylogenetic signal
- Need to quantify how strongly data supports each of the relationships in the tree

Bootstrapping

- Typically tackled with a statistical test called bootstrapping
- Assesses chances of recovering a particular clade again if we randomly re-sample our data
- Data matrix is sampled with replacement to produce pseudo-replicate datasets
- Measures which parts of the tree are weakly supported with a low bootstrap %

Bootstrapping

An example that uses a Maximum Likelihood (ML) tree...

Nature Reviews | Genetics

...bootstrapping is performed 1,000 times generating 1,000 ML trees

Bootstrap cut-offs

- Exact interpretation of bootstrap % is elusive
- Higher is better but what is a reasonable cutoff? 70%?
- Warning: bootstrapping predicts whether the

same result would occur if more data were collected not whether the result is actually correct

