

UNDERGRAD & GRAD STUDENT UROP MIXER Course 20 | Course 7 | Course 5 | Course 10B | Course 6-7

2/254:30-5:30 56-614

Present your research to a variety of undergrads and get a UROP! Refreshments will be served!

RSVP at: https://goo.gl/A69WLQ

Email questions to biotech-undergrad-officers@mit.edu

I Protein expression II Building an expression system

2/18/16

Biology vs. Technology

- Quantum dots (QDs) are small semiconductors that are able to convert light into nearly any color
 - Color is determined by size
- QDs can be targeted to cancer cells

How are proteins generated?

How are proteins generated?

How *specifically* are proteins generated?

Protein synthesis

- Ribosome has three sites for tRNA binding
 - Aminoacyl (A) site binds incoming tRNA
 - Peptidyl (P) site holds tRNA with forming peptide chain
 - Exit (E) site

What controls protein expression?

What controls protein expression?

- At the level of transcription
 - Environmental regulation of promoters
 - Repressor binding to operator sequences
 - Sigma factor binding to promoters
- At the level of translation
 - Proteasome degradation of proteins
 - Modifications

Generating proteins for research

- Purify from native source
 - (+) no DNA manipulation, correct folding likely
 - (-) need high abundance, only native proteins
- Synthesize de novo
 - (+) no DNA manipulation, pure product
 - (-) expensive, difficult for >50 amino acids
- Produce using expression system

 (+) inexpensive, generally high-yield
 (-) cloning required, troubleshooting

What do we need to build a protein expression system?

Building a protein expression system

• Vector

• Compatible host

• Expression machinery

• Control switch

Considerations for the vector

- Multiple cloning site (MCS)
- Resistance cassette, typically antibiotic marker
- Origin of replication
- Ribosome binding site (RBS)
- Copy number
 - High copy number gives greater yield
 - Lower copy number alleviates stress, toxicity

pRSET engineered for protein expression

*Version C does not contain Sac I

Considerations for the host

- Growth rate
- Growth conditions
- Genotype
 - Presence of transcriptional, translational machinery
 - Absence of enzymes that decrease yield, efficiency

BL21(DE3)pLysS engineered for protein expression

- Lacking *ompT* and *lon* Encode for proteases
- Carries gal
 - Allows for utilization of galactose as carbon source
- Lacking *dcm*
 - Unable to methylate cytosine
- Lacking $hsdS_B(r_B^- m_B^-)$
 - Inactive restriction/methylation system

Considerations for the machinery

- Codon usage
- Chassis
 - Prokaryote versus
 Eukaryote

Linked with host choice

Considerations for the control switch

- Responsiveness
- Chemical used for 'on'
- Tight control
 - Weak 'off' may allow leaky expression of toxic protein
 - Weak 'on' may delay protein expression or give low yield

• Linked with vector and host choice

Our system uses two switches

- IPTG induction
 - Used to induce protein expression by activating transcription of T7 polymerase

- T7 control
 - Used to eliminate leaky control of T7 polymerase expression

Nature Reviews | Genetics

IPTG induction of protein expression

β-D-galactopyranosyl-(1-4)-D-glucose (lactose)

isopropyl β-D-1-thiogalactopyranoside (IPTG)

- P_{lac} drives expression of T7 polymerase gene
- P₇₇ drives expression of gene of interest
- Both promoters upstream of *lacO* sequence

T7 control of protein expression

- pLysS encodes T7 lysozyme
 - Forms complex with
 T7RNAP
 - Prevents elongation of transcripts
- Corrects for leaky T7RNAP expression

BL21(DE3)pLysS and pRSET system includes both levels of control

Additional considerations...

- Growth phase of expression host
- Concentration of inducing chemical
- Timeframe of induction
- Stability of protein

 Storage time, conditions
- And...

In the laboratory...

- Isolate X#Z plasmid potentials
 Two clones inoculated ~18 h prior to laboratory
- Submit X#Z plasmids for sequencing check
- Transform X#Z plasmids into BL21(DE3)pLysS

Homework due M1D5

 Write methods draft

