

L6 – Engineering Transcriptional Responses with a Chemical Probe

February 27, 2020

>100,000 proteins of unknown structure or function How do these parts give rise to organismal complexity?

transcription factors of eukaryotic cells

Transcriptional protein complex 1

Transcriptional protein complex 2

Individual factors

Transcriptional protein complex 3

Transcriptional protein complex 1

Transcriptional program 1

Transcriptional protein complex 2

Transcriptional program 2

Individual factors

Transcriptional program 4

Transcriptional protein complex 3

Transcriptional program 3

Transcriptional protein complex 1

Transcriptional program 1

Cell state 1

Transcriptional protein complex 2

Transcriptional program 2

Cell state 2

Therapeutically-driven probe discovery

target cause of disease revealed by human genetics

patient samples reveal list of disease genes test impact of disease genes in a physiologic settings discover molecules that reverse impact of disease genes

Transcription factors

implicated in a broad spectrum of disease

AVGR8 BCL11A CAMTA1 FIF1 ETS1 GATA3 GTF2H1 HHEX-IDE HIF2A HNF1B HPB1 IRF5 IRF8 LBXCOR1 MAF MECP2

central corneal thickness **β**-hemoglobin disorders episodic memory deficit systemic lupus erythematosus systemic lupus erythematosus periodontitis amyloidosis T2D RCC T2D osteoarthritis various AI disorders MS restless leg syndrome early-onset obesity autism

MEIS1 MLXIPL NFATC2 NOTCH2 PBX4 PPARG RELA RFX4 SP7 STAT3 STAT4 TCF4 TCF7L2 THAP1 ZNF469 **ZNF804A**

restless leg syndrome coronary artery disease T1D T2D coronary artery disease T2D rheumatoid arthritis Parkinson's disease BMD various AI disorders and cancers systemic lupus erythematosus schizophrenia, corneal dystrophy T2D early-onset torsion dystonia central corneal thickness schizophrenia

Transcription factors

misregulation in cancer

amplified TF cancer genes

JUN	sarcoma
LMO1	T-ALL, neuroblastoma
MITF	melanoma
MYC	various cancers
MYCL1	small cell lung
MYCN	neuroblastoma
NKX2-1	folicular lymphoma
REL	Hodgkin lymphoma
SOX2	NSCLC, esophageal SCC

germline mutated TF cancer genes

HNF1	HCC, hepatic adenoma
LMO1	neuroblastoma
PHOX2B	neuroblastoma
RB1	various cancers
SMAD4	gastrointestinal polyps
SMARCB1	malignant rhabdoid
SUFU	medulloblastoma
TP53	various cancers
WT1	Wilms tumor

TF cancer genes with frameshift mutations

ARID1A	clear cell ovarian carcinoma, RCC
ASXL1	MDS, CMML
ATRX	pancreatic neuroendocrine
CEBPA	AML, MDS
CREBBP	ALL, AML, DLBCL, B-NHL
DAXX	pancreatic neuroendocrine
EP300	various cancers
GATA1	megakaryoblastic leukemia
GATA3	breast
HNF1	HCC, hepatic adenoma
HRPT2	parathyroid adenoma
NOTCH2	marginal zone lymphoma, DLBCL
PBRM1	breast, clear cell renal carcinoma
PHOX2B	neuroblastoma
PRDM1	DLBCL
RB1	various cancers
SMAD4	gastrointestinal polyps
SMARCA4	NSCLC
SMARCB1	malignant rhabdoid
SUFU	medulloblastoma
TP53	various cancers
WT1	Wilms tumor

somatically mutated TF cancer genes

AFF4	ALL
ARNT	AML
ATF1	melanoma, AFH
BTG1	BCLL
CBFB	AML
CDX2	AML
CEBPA	AML, MDS
CIC	soft tissue sarcoma
CIITA	PMBL, Hodgkin lymphoma
CREB1	clear cell sarcoma
CREBBP	ALL, AML, DLBCL, B-NHL
CRIC3	salivary gland mucoepidermoid
DUX4	soft tissue sarcoma
EBF1	lipoma
ELF4	AML
ELK4	prostate
ELNJ ER200	
EFSUU	AML Ewing encome prostate
ERG ETV/1	AML, EWING Sarcoma, prostate
ETV/	Ewing sarcoma, prostate
ETV5	prostate
ETV6	various cancers
EVI1	AMI_CMI
EWSR1	Ewing sarcoma, ALL
FEV	Ewing sarcoma
FLI1	Ewing sarcoma
FOXL2	ovarian
FOXO1A	alveolar rhabdomyosarcomas
FOXO3A	AL
FOXP1	ALL
GATA1	megakaryoblastic leukemia
GATA2	AML
GATA3	breast
HLF	ALL
HLXB9	AML
HMGAI	various cancers
HMGAZ	various cancers
HOXC11	
HOXC13	AMI
HOXD11	AMI
HOXD13	AML
HNF1	НСС
HRPT2	parathyroid adenoma
IKZF1	ALL

IRF4	MM		
JAZF1	endometrial stromal tumors		
JUN	sarcoma		
KLF6	prostate, glioma		
LAF4	ALL		
LMO1	T-ALL, neuroblastoma		
LMO2	T-ALL		
LPP	lipoma, leukemia		
LYL1	T-ALL		
MAFB	MM		
MAML2	salivary gland		
MDS1	MDS, AML		
MDS2	MDS		
MECT1	salivary gland		
MHC2TA	head-neck squamous cell, renal		
MITF	melanoma		
MKL1	AML		
MLF1	AML		
MLLT1	ALL		
MLLT10	ALL, colorectal		
MLLT2	ALL, breast cancers		
MLLT3	AML		
MLLT4	AML		
MLLT6	ALL		
MLLT7	ALL		
MYB	adenoid cystic sarcoma		
MYC	various cancers		
MYCL1	small cell lung		
MYCN	neuroblastoma		
NCOAT	alveolar rhabdomyosarcoma		
NCOA2	AML		
NCOA4	papillary thyroid		
NFIB	lipoma, ACC		
	B-INHL		
NOTCH1	I-ALL DIRCL marginal zona lymphoma		
	DLBCL, marginal zone lymphoma		
NICE2			
OUG2			
PAX3	alvoolar rhabdomyosarcoma		
PAX5	NHI		
ΡΔΧ7	alveolar rhabdomyosarcoma		
PAX8	follicular thyroid		
PBX1	pre B-ALL		
PHOX2B	neuroblastoma		
PLAG1	salivary adenoma		
PMX1	AML1		

POU2AF1	NHL
POU5F1	sarcoma
PPARG	follicular thyroid
PRDM1	DLBCL
PRDM16	MDS, AML
RARA	APL
RB1	various cancers
REL	Hodgkin lymphoma
RUNX1	AML, pre B-ALL
RUNXBP2	AML
SMAD4	colorectal, pancreatic
SMARCA4	NSCLC
SMARCB1	malignant rhabdoid
SOX2	NSCLC, esophageal SCC
SS18	synovial sarcoma
SS18L1	synovial sarcoma
SSX1	synovial sarcoma
SSX2	synovial sarcoma
SSX4	synovial sarcoma
SUFU	medullablastoma
SUZ2	endometrial stromal tumors
TAF15	ALL, EMC
TAL1	lymphoblastic leukemia
TAL2	I-ALL
TCEAT TCEAT	salivary adenoma
TCF1Z	
	pre B-ALL
	renal, alveolar sont sarcoma
	renal (child epithelioid)
	pre B-ALL
TIF1	
TIX1	
TLX3	Τ-ΔΙΙ
TP53	various cancers
TRIM27	papillary thyroid
TRIM33	papillary thyroid
TSHR	toxic thyroid adenoma
WT1	Wilm tumor
ZNF145	APL
ZNF198	MPD, NHL
ZNF278	Ewing sarcoma
ZNF331	follicular thyroid adenoma
ZNF384	ALL
ZNF521	ALL
ZNF9	aneurysmal bone cysts
ZNFN1A1	ALL, DLBCL

A complex task?

transcription factors are the prototype of an 'undruggable' target

disordered when isolated from binding partners

DNA-binding domains lack obvious pockets

transit to reach resident nuclear factors

Can we build general and systematic platforms for developing chemical probes for transcriptional regulators?

Transcription Profile

Can we tune dysregulated gene expression programs and impact cell state?

Profiling 100 diverse transcription factors

commercially available purified, His-tagged

145 InterPro domains *e.g.* bZip, Znf_C2H2, Fbox, Ets, etc.

>500 GO terms

e.g. nuclear, chromatin remodeling, basal transcription, etc.

>100 KEGG pathways

e.g. Wnt signaling, chronic myeloid leukemia, circadian entrainment, etc.

'100 Transcription Factor' SMM Screen

characterize and optimize probes for individual TFs

100 diverse transcription factors

commercially available purified, His-tagged

145 InterPro domains *e.g.* bZip, Znf_C2H2, Fbox, Ets, etc.

>500 GO terms

e.g. nuclear, chromatin remodeling, basal transcription, etc.

>100 KEGG pathways

e.g. Wnt signaling, chronic myeloid leukemia, circadian entrainment, etc.

Clemons et al., PNAS 107, 18787-18792, 2010

MYC family of transcription factors

master regulators of broad cellular processes

Secondary RNA amplification

c-Myc

accumulates in promoter regions and amplifies transcription when overexpressed in cancer

Lin et al., Cell, 151, 56-67 (2012); Nie et al, Cell 151, 68-79 (2012)

MYC expression in haploinsufficient mice

amelioration of age-associated phenotypes

An obstinate therapeutic target

many protein-protein interactions

unstructured domains no traditional binding pockets large buried interface

Max as a target: heterodimer/homodimer dynamics

SMM screens: purified Max transcription factor

117 assay positives

Compound

Hit

Mock

5.0

Z Score B

7.5

Z Score C

2.5

Reporter gene assays: putative Max binders modulate Myc-driven transcription

Cell viability assays: Are Myc or Max required?

_

P493-6 Dox-repressible cells for MYC 'on/off' studies

P493-6

	KI-MS2-001	KI-MS2-008		D/0	3.6
Myc reporter	1.98 µM	1.28 µM	dox	-	+
P493-6 Myc on	7.36 µM	2.15 μM	c-Myc	Reason.	
P493-6 Myc off	>50 µM	>50 µM		P493-6	PC12
			Max	-	

Cell viability assays: Are Myc or Max required?

P493-6 Dox-repressible cells for MYC 'on/off' studies

Max-deficient PC12 pheochromocytoma cells

	KI-MS2-001	KI-MS2-008	P/03-6
Myc reporter	1.98 µM	1.28 µM	dox – +
P493-6 Myc on	7.36 µM	2.15 µM	с-Мус
P493-6 Myc off	>50 µM	>50 µM	P493-6 PC12
PC12	>50 µM	>50 µM	Max

Conditional cellular models of MYC expression

Imaging of biomarkers: conditional vs. chemical modulation

modulating Myc in an engineered osteosarcoma model

Anja Deutzmann, Felsher Lab Stanford

scale bar = 40 μm

Does the probe antagonize the Myc/Max heterodimer?

Electrophoretic Mobility Shift Assay (EMSA) aka Gel Shift Assay

Does the probe antagonize the Myc/Max heterodimer?

EMSA

Does the probe stabilize the Max/Max homodimer?

n

Western blots: KI-MS2-008 alters Myc protein levels

rescue experiment with 10 µM proteasome inhibitor MG132

Myc protein stability is regulated by the ubiquitin-proteasome system

KI-MS2-008

mixed mechanism inhibitor?

Gene expression profiling: KI-MS2-008 mimics MYC inactivation

Gene Set Enrichment Analysis reveals an enrichment of Myc target genes

You will learn more about this method you will learn more about in module 2

In vivo studies: KI-MS2-008 modulates tumor volume in Myc-dependent mouse models of cancer

T-cell acute lymphoblastic leukemia blood cancer

0.06 mg/kg daily IV administration

hepatocellular carcinoma solid tumor

p = 0.0164

10 12

8

0.24 mg/kg subcutaneous administration 5d on/2d off cycles

Cell Chemical Biology

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

Graphical Abstract

Authors

Nicholas B. Struntz, Andrew Chen, Anja Deutzmann, ..., Charles Y. Lin, Dean W. Felsher, Angela N. Koehler

Correspondence

koehler@mit.edu

In Brief

Myc/Max-mediated transcription is deregulated in most of human cancers. Struntz et al. discovered a small molecule that stabilizes the Max homodimer and attenuates Myc-driven transcription with efficacy in cellular and murine cancer models. This discovery reinforces an alternative Myc-targeting strategy and could inform development of compounds to treat Myc-dependent cancers.

Highlights

- KI-MS2-008 is a Max-binding small molecule that attenuates Myc-driven transcription
- The compound stabilizes the Max homodimer
- Effects on DNA occupancy and the transcriptome resemble loss of Myc
- Treatment with KI-MS2-008 exhibits efficacy in cellular and murine cancer models

Publication Date is March 14, 2019

Current directions

optimize potency and solubility, PK/PD-guided medicinal chemistry

additional tumor models same tumor models + new readouts

stabilizing repressive states vs. inhibiting activating states?

stabilizing vs. inhibiting PPIs?

Our path to finding ligands - lectures

- 2/5/20 Lecture 1 Intro to chemical biology: small molecules, probes, and screens
- 2/11/20 Lecture 2 Our protein target: TDP-43
- 2/13/20 Lecture 3 Small molecule microarrays
- 2/18/20 No Lecture
- 2/20/20 Lecture 4 Quantitative evaluation of protein-ligand interactions
- 2/25/20 Lecture 5 A ligand discovery vignette: sonic hedgehog
- 2/27/20 Lecture 6 Engineering transcriptional responses with a small molecule
- 3/3/20 Lecture 7 Wrap up discussion: suggestions for how to report your findings