M2D8:

Complete data analysis and organize Research article figures

- 1. Quiz
- 2. Prelab discussion
- Apply statistical analyses to data sets
- 4. Outline Research article

Mark your calendars!

- Research article (20%)
 - completed individually and submitted via Canvas
 - due May 1 at 10 pm
 - Additional Office Hours TBD
- Notebook (5% and part of 5% Participation score)
 - one entry submitted via Canvas 24 hr after M2D8 by 10PM
 - (Tommorrow)
 - M2D1
- Blogpost (part of 5% Participation score)
 - due 5/2 via Slack

How will you evaluate and interpret your data?

1. What is the variation / noise in your data?

2. Do your data support that there is a difference between the populations / treatments?

Confidence intervals show variance in data

- At 95% confidence interval, there is a 95% chance that the true mean is within the defined range
- Error bars used to represent variance

Calculating confidence interval in Excel

= CONFIDENCE(alpha, standard dev., size)

- Alpha: (if confidence = 0.95, then significance =...?)
- Standard deviation:
- Size:

How do you customize error bars in Excel?

Format Error Bars						
	•	-	Custom	Error Bars		
⟨¬¬ □			Positive Error Value		-	
 Vertical Error Bar 						
Direction			=Sheet1!\$D\$4:\$D\$7			
I O Both		-	Negative Error Value			
L O Minus			=Sheet1!\$D\$4:\$D\$7			
OPlus			1			
End Style		7		Cancel	ОК	
🔵 No Cap						
💽 Сар						
Error Amount						
Fixed Value	0.1					
Percentage						
Standard Deviation(s)	1.0	Enter Va	alue calculate	a for con	ridence	evel as
Standard Error		custom	error bars			
 Custom 	Specify Value					

Student's *t*-test determines if populations are significantly different

- Assume data follows *t*-distribution
- At p < 0.05, there is less than a 5% chance that populations are the same (95% chance that populations are different)
- Examines signal (means) : noise (variance) ratio

Calculating Student's t in Excel

P = T.TEST (array1,array2,2,3)

- Arrays:
- 2 = two-tailed test:
- 3 = population variances not assumed:

How will you use statistics in your data analysis?

- Student's t-test can only be used to compare two populations
- Report means & use T-test to determine significance
- What if data are not significant? Almost significant?

EXTRA: Population VS Sample

For our ICP-OES, what is our population, what is our sample?

EXTRA: Population VS Sample

For our ICP-OES, what is our population, what is our sample?

Our 3 replicates were **technical** replicates – only reflecting the true mean of what was in your tube, and **NOT** of the **population of mutant Fet4-expressing yeast**

1) For 109, you can choose to talk about statistics with this in mind, or treat them as **biological replicates**, for the purpose of practicing how to talk about statistics.

For today...

- Apply statistics to evaluate your data
- Use extra time to get a head start on your Research article!

For M3D1...

 Prepare for the Research proposal presentation by listing ideas / problems that you find interesting