

Overview of Module 2 goals

Research:

Genetically modify a yeast iron transporter to preferentially take up cadmium as a model for bioremediation

Communication:

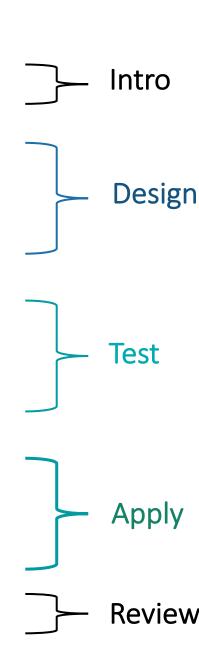
Journal article presentation Research article

Technical:

Protein engineering:

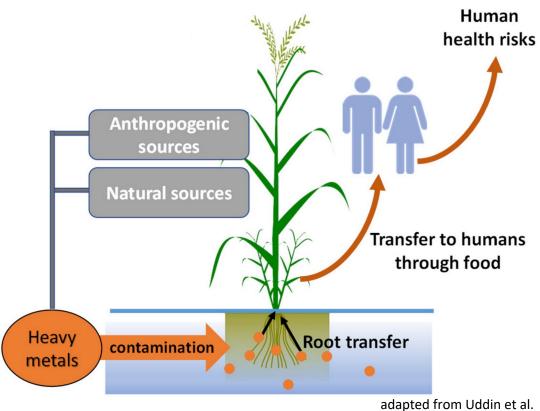
Site-Directed Mutagenesis

Mutant expression


Functional assays:

Elemental analysis of metal uptake

Cell tolerance of metal uptake


Module Outline

- M2D1: Environmental heavy metal contamination
- M2D2: Model system target selection and engineering approach
- M2D3: Model system choosing and modifying a chassis
- M2D4: Screening a system—high throughput vs functional screens
- M2D5: Analysis of elemental metals laboratory and field approaches
- M2D6: Applying remediation strategies—advantages and pitfalls
- M2D7: Engineering a problem-specific bioremediation solution
- M2D8: Comm Lab

Overview of today's lecture

- Heavy metals
 - What are they?
 - What are their uses?
- How do heavy metals get into environment?
 - Geogenic sources
 - Anthropogenic sources
- What happens after heavy metal exposure
 - To soil
 - To plants
 - To humans

How can we mitigate heavy metal contamination?

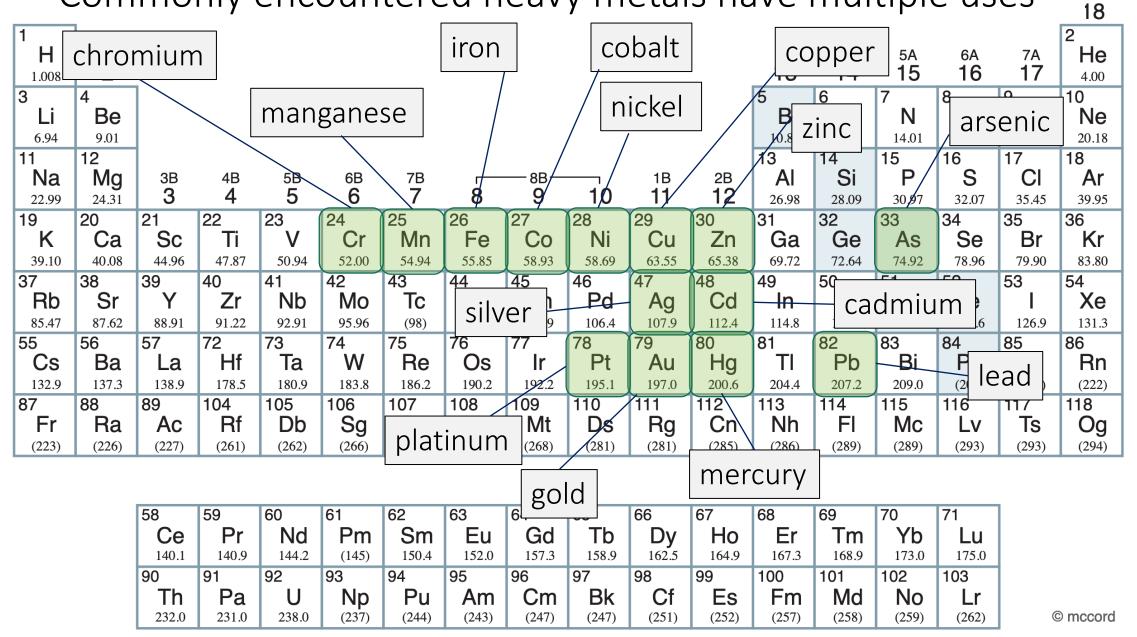
Heavy metals and their uses

Heavy metals Nickel

Heavy metals

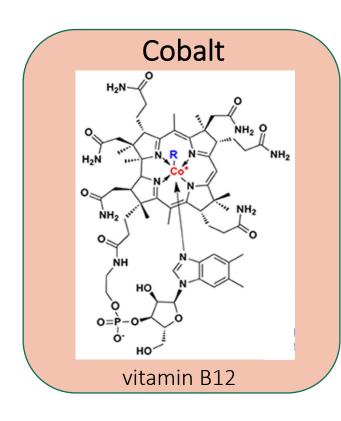
Heavy metals is poorly defined as a term

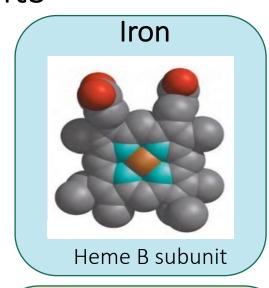
- Relatively high atomic density (greater than 5 g/cm³)
- Atomic number > 20

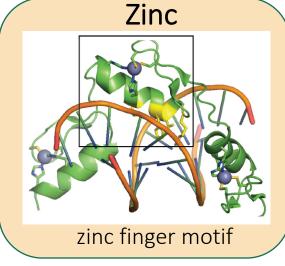

Exhibit metal-like properties

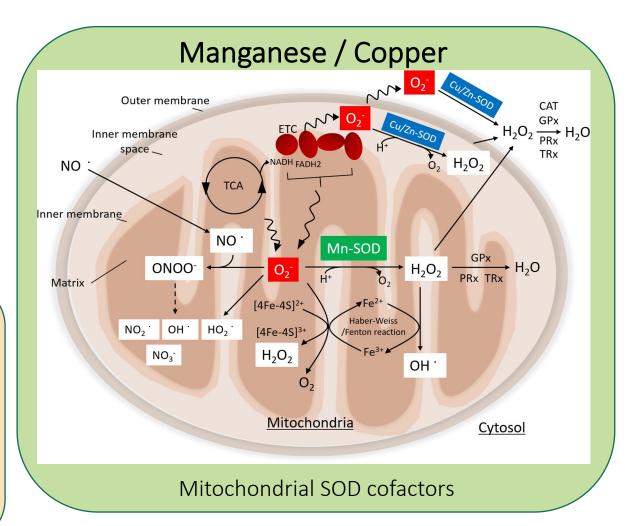
Commonly encountered heavy metals have multiple uses

8A


Metals can act as protein co-factors in human biology


•	_																
1 H 1.008	2A 2											за 13	4A 14	5A 15	6A 16	^{7A} 17	2 He 4.00
3	4]										5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15_	16	17	18
Na	Mg	3B	4B	5B	6B	7B		—8B—		1B	2B	Al	Si	P	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26_	27	28	29	30_	31_	32	33	34	35_	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.64	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(277)	(268)	(281)	(281)	(285)	(286)	(289)	(289)	(293)	(293)	(294)


⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	⁶⁴ Gd	65 Tb	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	00	00	0.4	OF	00	0.7	00	00	400	404	400	400
00	ופן	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	100 Fm	Md	No	Lr


© mccord

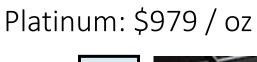
Metals crucial for metabolic activity are also known as essential elements

1A 1		Н	eav	y m	etal	s ha	ive v	/alu	e as	s "pr	reci	ous	me	tals	<i>''</i>		8A 18
1 H 1.008	2A 2											3A 13	4A 14	5A 15	6A 16	^{7A} 17	2 He 4.00
3 Li 6.94	4 Be _{9.01}											5 B 10.81	6 C	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3B 3	4B 4	5B 5	6B 6	7В 7	8	—8B— 9	10	1B 11	2B 12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 20.10	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10 37 Rb	38 Sr	Sc 44.96 39 Y	Ti 47.87 40 Zr	50.94 41 Nb	Cr 52.00 42 Mo	Mn 54.94 43 Tc	Fe 55.85 44 Ru	Co 58.93 45 Rh	Ni 58.69 46 Pd	Cu 63.55 47 Ag	Zn 65.38 48 Cd	Ga 69.72 49 In	50 Sn	As 74.92 51 Sb	Se 78.96 52 Te	9.90 53	54 Xe
39.10 37	Ca 40.08	Sc 44.96	Ti 47.87	V 50.94	Cr 52.00	Mn 54.94 43	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.64	As 74.92	Se 78.96	Br 79.90	Kr 83.80

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
							0.						
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

© mccord

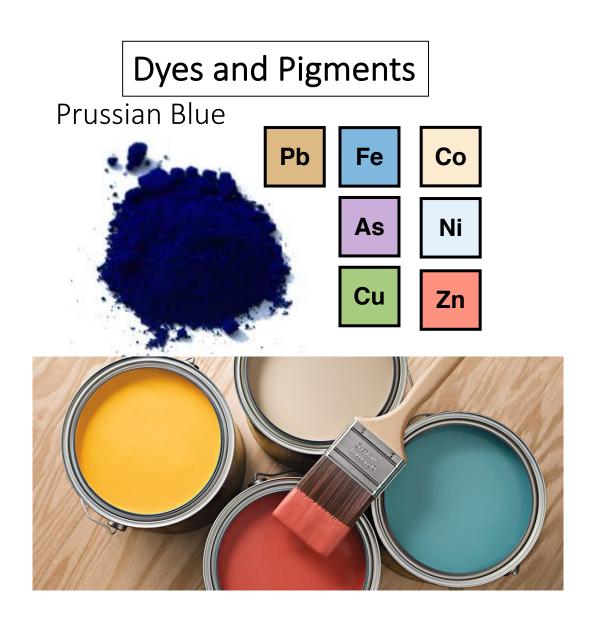
Precious metals have economic and cultural


value

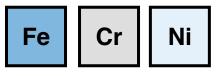
Silver: \$21 / oz

Ag

Gold: \$1,858 / oz



1A 1		Ma	any	hea	vy n	neta	als p	lay	a rc	le ii	n m	anu	fact	curir	ng		8A 18
1 H 1.008	2A 2	_										3A 13	4A 14	5A 15	6A 16	^{7A} 17	He 4.00
3 Li	4 Be _{9.01}											5 B 10.81	6 C	7 N	8 O 16.00	9 F 19.00	10 Ne 20.18
6.94 11 Na 22.99	12 Mg 24.31	3B 3	4B 4	5B 5	6В 6	7B 7	8	— 8B— 9	 10	1B 11	2B 12	13 Al 26.98	14 Si 28.09	14.01 15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	³¹ Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10 37 Rb	38 Sr	39 Y	47.87 40 Zr	50.94 41 Nb	42 Mo	43 Tc	55.85 44 Ru	58.93 45 Rh	46 Pd	63.55 47 Ag	65.38 48 Cd	69.72 49 In	^{72.64} 50 Sn	51 Sb	78.96 52 Te	79.90 53	54 Xe
85.47 55 Cs	56 Ba	^{88.91} 57 La	91.22 72 Hf	92.91 73 Ta	95.96 74 W	75 Re	76 Os	77 lr	78 Pt	79 Au	80 Hg	114.8 81 TI	82 Pb	83 Bi	127.6 84 Po	126.9 85 At	86 Rn
132.9 87 Fr (223)	137.3 88 Ra (226)	138.9 89 Ac (227)	178.5 104 Rf (261)	180.9 105 Db (262)	183.8 106 Sg (266)	186.2 107 Bh	190.2 108 Hs	192.2 109 Mt (268)	195.1 110 Ds (281)	197.0 111 Rg (281)	200.6 112 Cn (285)	204.4 113 Nh (286)	207.2 114 Fl (289)	209.0 115 Mc (289)	(209) 116 Lv (293)	(210) 117 Ts (293)	(222) 118 Og (294)


	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb	66 Dy 162.5	67 Ho	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
ŀ				` ′			137.3	150.5	102.5	104.7	107.5	100.7	175.0	175.0
	90 Th	91 Pa	92	93 N p	94 D 11	95 Am	96 Cm	97 Bk	98	99 Es	100 Fm	101 Md	102 No	103

© mccord

Heavy metals are used to manufacture common materials

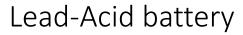
Stainless Steel

Heavy metals are frequently used in coating and electroplating for everything from automotive to aerospace machinery

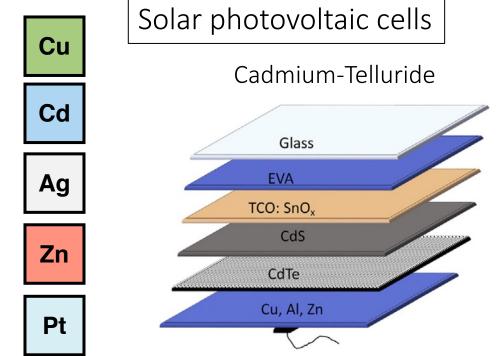
Chrome plating

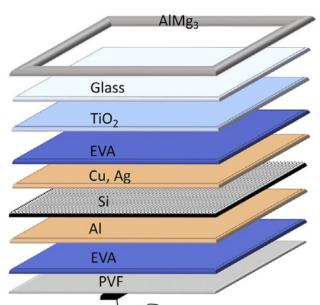
Au

Batteries utilize heavy metals


Alkaline batteries

EV Battery


Photovoltaic cells, photoresistors, infrared detectors all use heavy metals


Infrared detectors & Photoresisters

Infrared detectors & Photoresistors

CdS photo-sensitive track
Plated electrodes

Connection pin

crystalline-Silicon

1A 1	S	om	e he	eavy	me	etals	are	e hig	ghly	tox	ic a	t lov	v ex	(pos	ure		8A 18
1]							leve	2 ا د								2
H 1.008	2											13	14	15	16	1 ^A	He 4.00
3	4	1										5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.94	9.01 12	-										10.81 13	12.01 14	14.01 15	16.00 16	19.00	20.18
Na	Mg	3B 3	4B	5B	6B	7B 7		—8B—		1B	2B	Al	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22 Ti	23 V	24	25 Man	26	27	28	29	30 7 n	31	32	33	34	35 Dr	36
K 39.10	Ca	Sc 44.96	47.87	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.47	87.62	88.91	91.22	92.91	95.96	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 B o	57	72 H f	73 Ta	74 W	75 D o	76 Os	77 	78 P t	79	80	81 TI	82 Pb	83 Bi	Po	85 A t	86 Dn
132.9	Ba	La 138.9	ПI 178.5	180.9	183.8	Re 186.2	190.2	lr 192.2	195.1	Au 197.0	Hg 200.6	204.4	207.2	209.0			Rn
87	88	89	104	105	106	107	108	109	110	197.0	112	113	114	115	(209)	(210) 117	(222) 118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	''fi	Mc	Lv	Ts	Og
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(277)	(268)	(281)	(281)	(285)	(286)	(289)	(289)	(293)	(293)	(294)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

© mccord

Environmental contamination and its consequences

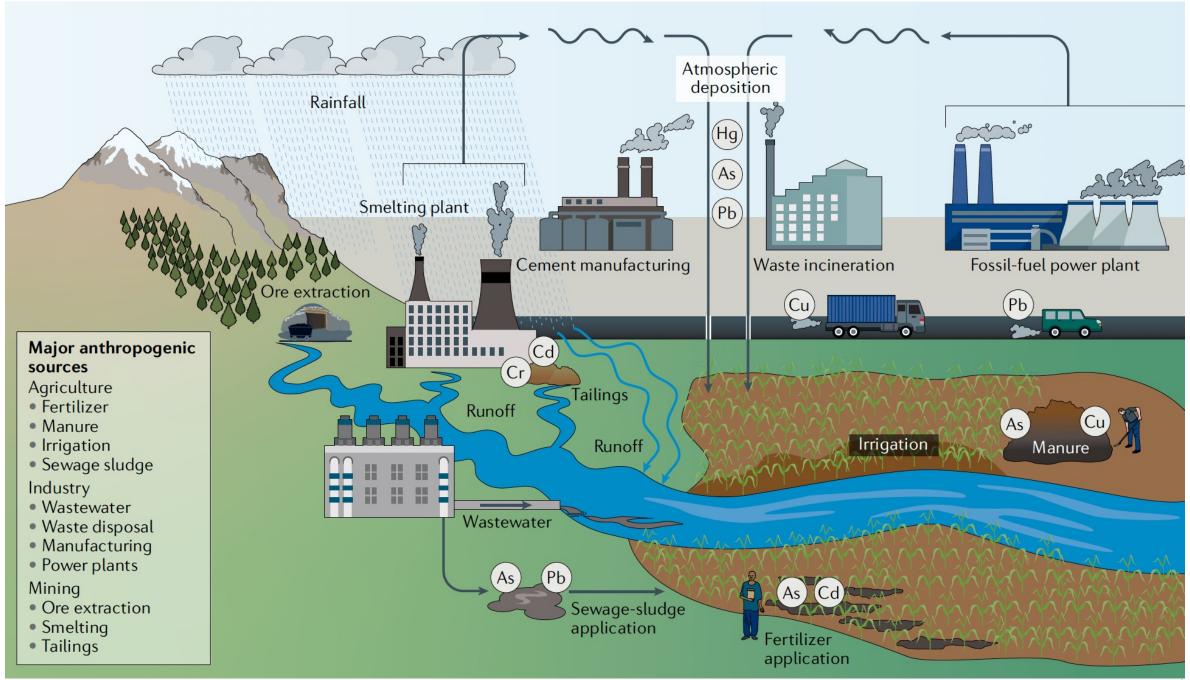
There are 2 main routes of heavy metal release into the

environment

Geogenic sources

Weathering of rock

Volcanor



Agrochemicals

Industrial activity

Smelting and mining activity

Sewage and waste disposal

Agrochemicals release heavy metals into the soil

Fertilizers

- Sewage sludge fertilizer contains heavy metals
- Fly ash from coal plants
- Inorganic phosphate-based fertilizers increase cadmium in the soil
 - Some disagreement if the fertilizers release cadmium or increase bioavailability

Pesticides and fungicides

• Can contain heavy metals as contaminants

Industrial activity contributes to heavy metal contamination

- Coal-fired power stations release:
 - Cu, Zn, Cd, Ni
- Chemical processing which involves heavy metals is required to produce common goods
 - Plastics
 - textiles
 - electronics
 - wood preservatives
 - automotive components
- The waste generated in manufacturing can leach into the environment

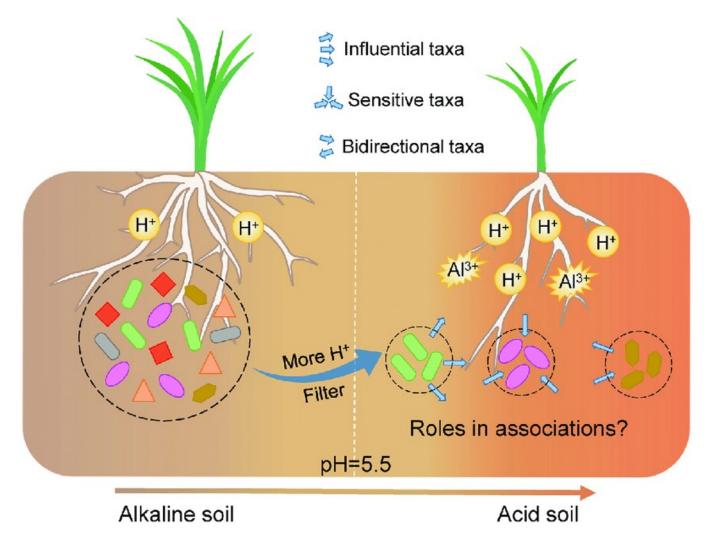
Smelting and mining activity produce metal contaminants

Mining

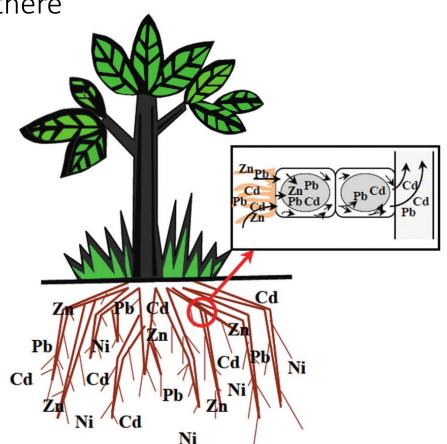
 Disruption of sedimentary layers can release embedded heavy metals

• Waste runoff from mining sites contaminates

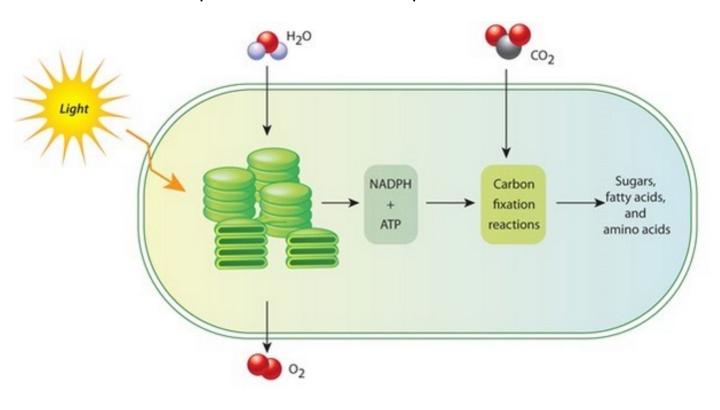
water


Smelting

- Slag generated from refinement of metal can contain contaminants
 - Smelting zinc produces slag containing lead and cadmium
- Heavy metal particulates are also released


Heavy metals fundamentally change soil microbial richness

- Decrease in soil viability
 - lower microbial biomass
 - less biodiversity
- Reduced nitrogen fixing
- Reduced microbial metabolism
 - reduced essential enzyme activities
 - reduced litter breakdown
- Altered microbial communication
- Changes in soil ecosystem



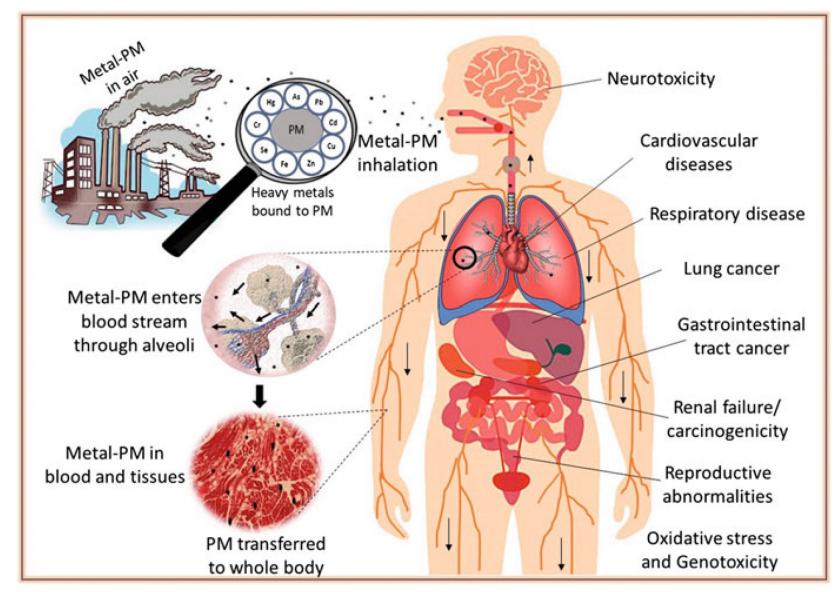
Heavy metal accumulates in plants and disrupts essential biology

 Most heavy metal enters the plant through the roots and accumulates there

- General stress response
 - obstruct chloroplast structure
 - disrupt electron transport

Adiloglu, 2018

Heavy metal exposure has wide ranging effects on human

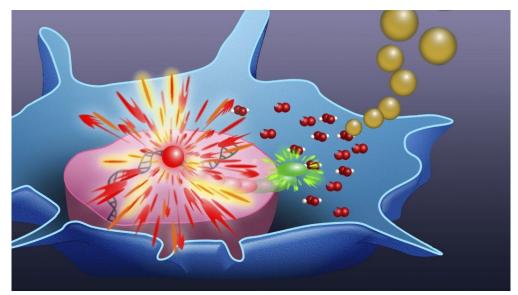

health

Routes of exposure

- Inhalation
- Ingestion
- Dermal

Health effects

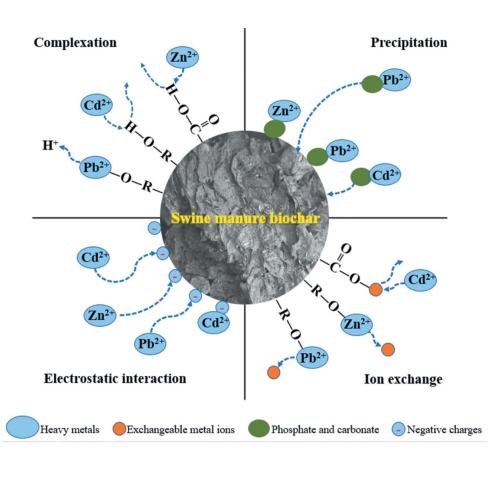
- Systemic toxicity
- Damage of multiple organs

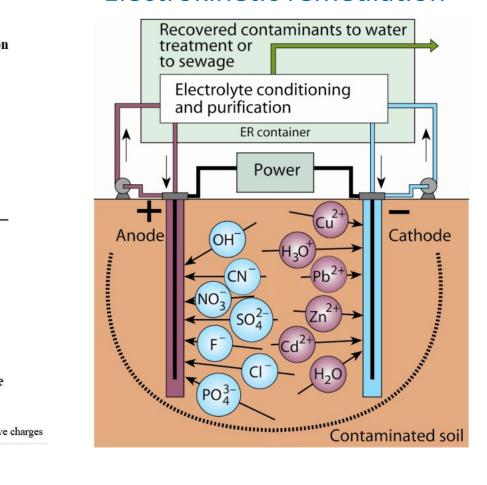

There are multiple proposed mechanisms for metal toxicity

Protein disruption

- Inhibit enzymes through thiol, sulfhydryl, amide group binding
 - Broad enzyme inhibition
- Inhibits enzymes involved in DNA damage repair
 - Many heavy metals are known or putative carcinogens
- Replace essential metal cations and cofactors

Oxidative stress

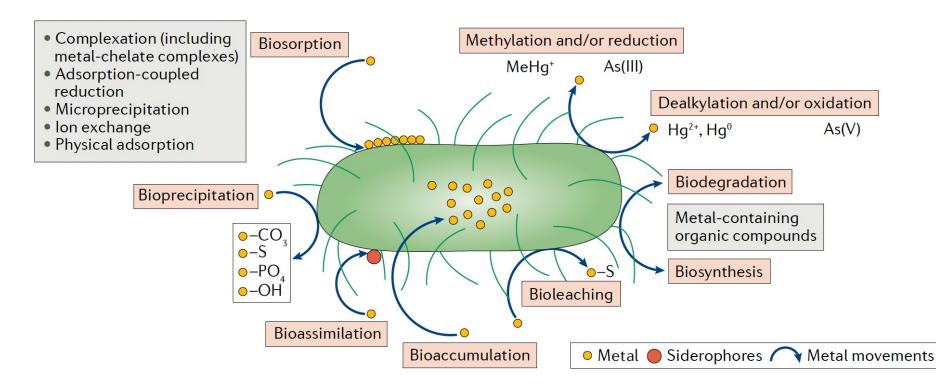

- Disrupt mitochondrial function
- Generate reactive oxygen species


What can we do to mitigate this issue?

Physical and chemical mitigation of heavy metal contamination

Soil Amendment with Biochar

Electrokinetic remediation

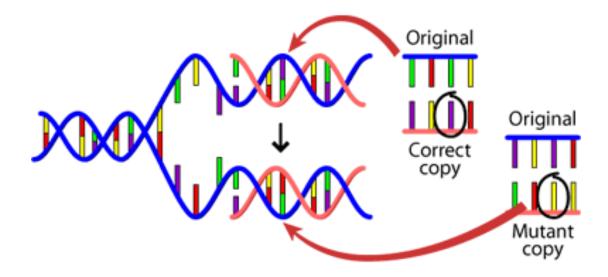

- Soil excavation / soil washing
- Chemical precipitation from wastewater

Bioremediation is a useful tool to mitigate heavy metal contamination

• Bacteria, yeast, and plants have natural defenses against heavy metal damage

• These defenses can be engineered to create effective remediation models for

pollutants


How does this all relate to your Mod2 project?

- Begin the early stages of the process to create bioremediation model
- Alter a Saccharomyces cerevisiae cell surface protein
 - Fet4
 - Low-affinity iron permease reported to take up other metals
- Use rational design protein engineering to create a mutant form of Fet4
 - Reduce preference of Fet4 for iron and identify mutations that increase preference for cadmium
- Explore mutagenesis and functional screening

In lab today and tomorrow

• Examine secondary and tertiary structure of Fet4 and previous literature to determine mutations that have the potential to alter affinity of the transporter from iron to cadmium

Design mutagenesis primers to create your designed mutation

