M1D1: Complete in silico cloning and induce TDP43 protein expression

- 1. Laboratory Orientation quiz
- 2. Prelab discussion
- 3. Build protein expression vector *in silico*
- 4. Confirm protein expression vector in lab

Important Dates for Mod 1!

- Data summary (15%)
 - completed in teams and submitted via Stellar
 - draft due 3/8, final revision due 3/22
 - format in bullet points
- Mini-presentation (5%)
 - completed individually and submitted via Gmail
 - due 3/15
- Laboratory quizzes
 - scheduled for M1D4 and M1D7
- Notebook (part of 10% Homework and Notebook)
 - one entry will be graded by Joe 24 hr after M1D7
- Blog (part of 5% Participation)
 - due 3/16 via Blogspot

Overview of Mod1 Experiments

How are proteins made?

The Central Dogma

What if we want a specific protein?

Amplification

Digestion

• Ligation

Amplification: PCR cycling

1) Amplification— PCR reagents and conditions

1) Amplification—Guidelines for primer design

- Landing sequence: match to TDP43 gene, RRM12 region
- Flap sequence: endonuclease recognition sequence, junk DNA
 - Length (landing sequence): 17-28 bp
 - GC content: 40-60 %
 - Melting temp of primer : < 65 °C
 - Avoid secondary structure and repeat sequences (e.g. hairpins, primer dimers, ATATAT)

2) Digestion—Create compatible ends on insert fragment

and backbone

- many restriction enzymes function as homodimers
- binds palindromic sequences
- cleaves backbone

2) Digestion– Reagents and conditions

• Temperature

• Time

3) Ligation: T4 DNA ligase

 Forms covalent phosphodiester bond between 3' OH acceptor and 5' phosphate donor

Requires ATP

3) Ligation—Conditions

 Ideally, want 4:1 molar ratio of insert:backbone

 Calculate molar amounts from concentrations and sizes of DNA molecules

Ligation calculations

- 1. Determine volume of backbone
 - Use backbone concentration = 50 ng/uL
 - Want 50 100 ng
- 2. Calculate moles of backbone
 - Vector = 6837 bp, MW bp = 660 g/mol
- 3. Calculate moles of insert
 - Insert = 527 bp, 3:1 ratio of insert:backbone
- 4. Calculate volume of insert
 - Use insert concentration = 20 ng/uL

How do we confirm successful ligations/ DNA plasmid production?

Method 1: Segvencing

Method 2: Diagnostic Digest

- Amplify plasmid
 - Transform into bacteria
- Purification
 - Separate plasmid from chromosomal DNA
- Digestion
 - Confirm the plasmid contains expected fragments

Diagnostic Digest: Transformation to amplify DNA plasmid

 Incubation of bacteria and DNA plasmid

2. Heat shock (or electroporation)-- DNA taken in by competent cells

3. Recovery at 37C

4. Selection for bacteria that have taken up the plasmid

Diagnostic digest: DNA Purification

AKA: the mini-prep

1. Resuspend cells

2. Lysis

- 3. Neutralization
 - Separates chromosomal DNA from plasmid DNA
- 4. Wash

5. Resuspend or elute DNA

Diagnostic Digest: Digestion (again)

Confirmation digests

- Ideally, will cut once in insert and once in vector
 - Xbal and EcoRI?
 - Pstl?
 - Ncol?

pNLL-PCR (6000bp)

What should go in your notebook?

Laboratory notebook entry component:	Points:		
	Complete	Partial	Incomplet
Date of experiment (include Module#/Day#) and Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations	2	1	0
Visual details			
Qualitative information			
Raw data			
Data analysis	3	1.5	0
*Calculations			
Graphs and Tables			
Summary and interpretation of data	3	1.5	0
*What did you learn?			
*How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	1	0.5	0
OVERALL /15			

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, 2/8

Hypothesis or goal:

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb_FKBP12 in silico

- Include all work / notes / images / sequences generated.
- · Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- · Include completed table with volumes.
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(S20)_YourName"
 - Make each module a new folder
 - Make each day a new entry within module folder

• Share the project with:

Becky (rcmeyer@mit.edu) and Joe (jkreitz@mit.edu)

- Right-click and choose 'settings'
- Add collaborators by email

For today...

- Virtual cloning exercise to build pET_MBP_SNAP_TDP43-RRM12 expression plasmid
- Confirmation digest of pET_MBP_SNAP_TDP43-RRM12

For M1D2...

- Prepare a template for Benchling entries
- Complete in class exercises (ligation calculation, etc)