M1D1: Complete in silico cloning and induce TDP43 protein expression

1. Laboratory Orientation quiz

2. Prelab discussion
3. Build protein expression vector - in silico
4. Confirm protein expression vector - in lab

Important Dates for Mod 1!

- Data summary (15\%)
- completed in teams and submitted via Stellar
- draft due $3 / 8$, final revision due $3 / 22$
- format in bullet points
- Mini-presentation (5\%)
- completed individually and submitted via Gmail
- due 3/15

Mark your calendar!

- Laboratory quizzes
- scheduled for M1D4 and M1D7
- Notebook (part of 10\% Homework and Notebook)
- one entry will be graded by Joe 24 hr after M1D7
- Blog (part of 5\% Participation)
- due 3/16 via Blogspot

Overview of Mod1 Experiments

How are proteins made?

The Central Dogma

What if we want a specific protein?

- Amplification
- Digestion
- Ligation
"insert"
"fragment" TDP43 RRM12

BamHI ,

"vector"
"backbone" pET21

Ligation

Amplification: PCR cycling

1) Amplification- PCR reagents and conditions

25-30 cycles

1) Amplification-Guidelines for primer design

- Landing sequence: match to TDP43 gene, RRM12 region
- Flap sequence: endonuclease recognition sequence, junk DNA
- Length (landing sequence): 17-28 bp
- GC content: 40-60 \%
 (e.g. hairpins, primer dimers, ATATAT)

2) Digestion-Create compatible ends on insert fragment and backbone

3) Digestion -Reagents and conditions

Resigns
RES
Buffer (ATP)
DNA

- Temperature

REs
Buffer (ATP) - Time
DNA
3) Ligation: T4 DNA ligase

- Forms covalent phosphodiester bond between 3' OH acceptor and 5^{\prime} phosphate donor

3) Ligation- Conditions

Ligation calculations

1. Determine volume of backbone

- Use backbone concentration $=50 \mathrm{ng} / \mathrm{uL}$
- Want 50-100 ng

2. Calculate moles of backbone

- Vector $=6837 \mathrm{bp}, \mathrm{MW}$ bp $=660 \mathrm{~g} / \mathrm{mol}$

3. Calculate moles of insert

- Insert $=527$ bp 3:1 ratio of insert:backbone

4. Calculate volume of insert

- Use insert concentration $=20 \mathrm{ng} / \mathrm{uL}$

How do we confirm successful ligations/ DNA plasmid production?

Method 1:

Method 2: Diagnostic Digest

- Amplify plasmid
- Transform into bacteria
- Purification

- Digestion
- Confirm the plasmid contains expected fragments

Diagnostic Digest: Transformation to amplify DNA plasmid

1. Incubation of bacteria and DNA plasmid

2. Heat shock (or electroporation)
-- DNA taken in by competent cells
3. Recovery at 37 C
4. Selection for bacteria that have taken up the plasmid

Diagnostic digest: DNA Purification

1. Resuspend cells
2. Lysis
3. Neutralization

- Separates chromosomal DNA from plasmid DNA

4. Wash
5. Resuspend or elute DNA

Diagnostic Digest: Digestion (again)

- Confirmation digests
- Ideally, will cut once in insert and once in vector
- Xbal and EcoRI?
- Pstl?
- Ncol?

pNLL-PCR (6000bp)

What should go in your notebook?

Laboratory notebook entry component:	Points: Complete	Partial	Incomplete
Date of experiment (include Module\#/Day\#) and Title for experiment	1	0.5	0
Hypothesis or goal / purpose	1	0.5	0
Protocols (link to appropriate wiki sections)	1	0.5	0
Notes on protocol changes / clarifications	1	0.5	0
Observations	2	1	0
*Visual details			
*Qualitative information			
*Raw data			
Data analysis	3	1.5	0
*Calculations			
*Graphs and Tables			
Summary and interpretation of data	3	1.5	0
*What did you learn?			
*How does this information fit into the larger scope of the project?			
Information is clear	2	1	0
All days represented	1	0.5	0
OVERALL /15			

How should you format your notebook?

M1D1: In silico cloning and confirmation digest of protein expression vector

THURSDAY, $2 / 8$

Hypothesis or goal

What are you testing and what do you expect of your results?

Protocols: [include link to wiki]

Part 2: Construct pRSETb FKBP12 in silico

- Include all work / notes / images / sequences generated.
- Be sure to note any interesting observations or protocol changes!

Part 3: Confirmation digest

- Include completed table with volumes
- Include calculations.
- Be sure to note any interesting observations or protocol changes!

Summary and interpretations:

What, if any, conclusions can be made and what does this prepare you to do next?

How should you organize your notebook?

- Entitle your project "20.109(S20)_YourName"
- Make each module a new folder
- Make each day a new entry within module folder
- Share the project with:

Becky (rcmeyer@mit.edu) and Joe (jkreitz@mit.edu)

- Right-click and choose 'settings'
- Add collaborators by email

For today...

- Virtual cloning exercise to build pET_MBP_SNAP_TDP43-RRM12 expression plasmid
- Confirmation digest of pET_MBP_SNAP_TDP43-RRM12

For M1D2...

- Prepare a template for Benchling entries
- Complete in class exercises (ligation calculation, etc)

