M2D4:

Determine transporter mutation and prepare expression experiment

- 1. Comm lab workshop
- 2. Prelab discussion
- 3. Check sequencing results
- 4. Prepare for functional assay

Overview of Mod 2 experiments:

Confirm mutation using sequencing results

- What is the difference between dNTPs and ddNTPs?
- What modification (not shown in the image to right) is made to ddNTPs used in sequencing reactions?
- How do modified ddNTPs allow for a DNA sequence to be determined?

Dideoxynucleotide (ddNTP)

н

н

Prepare for functional assay by coating slides

- For immunofluorescence staining, cells must be attached to a glass coverslip
- Many cells, including yeast cells, do not adhere well to glass
- Poly-D-lysine is a chemically synthesized extracellular matrix with net positive charge
 - Enhances electrostatic interactions between negatively-charged ions of cell membrane and positivelycharged surface

For today...

- Class will be divided for exercises:
 - Red, Orange, Yellow start on Part #2
 - Purple, Pink, Blue, Green start on Part #3
- Use extra time to get a head start on your Journal article presentation or work on your Data summary revisions!
- Review feedback from M2D3

For M2D5...

- Draft a detailed outline introduction for your Research article
- Prepare a figure using the sequencing results and draft the corresponding results text

Logistics for Journal article presentation

- Due date: by 12p on presentation date
- Review Comm Lab workshop slides!
- Completed individually
- Submission guidelines:
 - Slides to Canvas
- Additional assignment components:
 - Ask questions after peer presentations
 - Meet with Noreen to review / discuss your presentation

How will you communicate *their* science?

Format considerations [edit]

The timing provided here is a guideline for a 10-minute presentation. Your presentation may vary depending on the content.

Section	Minutes	Number of slides	DO	DON'T
Introduction	~2	2-3	 Introduce the key concepts that the audience will need to follow your presentation. Briefly state the overall scope and significance of the study what is the central question and why is it interesting? Try to summarize background material with a model slide rather than lines of text. If text is needed, bring in the details as you speak using PowerPoint animation. 	 Don't assume you are addressing an expert audience. Don't give more information than is absolutely needed to understand the rest of your talk. Don't put too much information on each slide.
Data	~7	4-6	 Present the data in a logical sequence, letting each slide build upon the previous ones. Include a title for each slide. The title should be the conclusion and should be unique to the information on the slide. Make every element of your slide visible to the entire room. This means 20-point font or greater. Interpret each slide thoroughly and carefully. Point out strengths and weaknesses of the data along the way. 	 Don't read your talk. Similarly, do not read lists from slides. Don't put much information on each slide. Each slide should make only one point. Never say, "I know you can't read this, but". Everything on each slide should be legible. Don't be afraid to remind the audience how the data fits into the overall question
Summary	~1	1	Review each of your main messages.Clearly state what the study contributed to the field.	Don't repeat experimental details.
Question & Answer	?	0	 Answer the question being asked. If you are unclear about the question, ask for clarification. Respect every question and questioner. 	• Don't take too long with one question. If the discussion is involved, suggest meeting after the talk to discuss it more.

How will you report their data?

- Consider how to present the main finding / conclusion using the key data from the article
 - Do not have time to show everything
- Each data slide should present a single message
 - Do not need to include all panels for every figure used
- Be mindful of slide design
 - Title line is valuable real estate, use it wisely
 - Text is okay, but only important details should be included
 - The data are the most important part of the slide, ensure labels are clear

EXAMPLE SLIDE: Blue line goes down at X time

- Data represent expression of Y over time measured using method A
- Possibly something about the control(s), if applicable
- Perhaps an important note about the data that is not already stated in the title
- Transition to next slide...

Time (units if applicable)

What is a figure?

- Critically think about which figures best give the take-home message
- Consider which figures are best for a visual presentation
- Omit panel labels
- What figures are you able to understand / explain?

Figures can be overwhelming!

- When a complicated figure is necessary for the message, consider...
 - Using animation to layer in the information
 - Using boxes / arrows to highlight the information as it is discussed
- All color codes / labels that are shown should be explained

Figures may not project well!

- When an intricate / low contrast figure is necessary for the message, consider...
 - Describing each image and the key differences between the images as part of the script
 - Using clear labels on the images that define what is shown in each
- Avoid stating "this is difficult to see" or "this is better in the paper"

Figures may include layers of data!

- When results for controls are shown, be sure to...
 - Describe for what the result controls
 - State what is expected and how is relates to the experimental results
- Conditions and results for individual variables should be addressed

