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Today

Donut Day
Finish Phylogenetics
Microbiome — other considerations
Basic Epidemiology



Assessing confidence

Trees obtained by phylogenetics are subject to
error like all other scientific hypotheses

A tree will be generated regardless of whether
there is a phylogenetic signal

Need to quantify how strongly data supports
each of the relationships in the tree

What is the extent to which characters within
a matrix contradict each other?



Bootstrapping

Typically tackled with a statistical test called
bootstrapping

Assesses chances of recovering a particular
clade again if we randomly re-sample our data

Data matrix is sampled with replacement to
produce pseudo-replicate datasets

Measures which parts of the tree are weakly
supported with a low bootstrap %



Bootstrap cut-offs

* Exact interpretation of bootstrap % is elusive

* Higher is better but what is a reasonable cut-
off? 70%?
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ATTENTION: We have recently discovered some issues with the error report system. If you need to report an error/bug, please use the built-in system and forward the bug
report that you will receive to MicrobiomeHelp@colorado.edu. Sorry for any inconvenience.

Fast UniFrac is a new version of UniFrac that is specifically designed to handle very large datasets. Like UniFrac, Fast UniFrac provides a suite of tools for the comparison of
microbial communities using phylogenetic information. It takes as input a single phylogenetic tree that contains sequences derived from at least three different environmental
samples, a file mapping ids used in the tree to a set of unique sample ids (same format as prior version 'environment file', and an (optional) category mapping file describing
additional relationships between samples and subcategories for visualizations. For example, in a given set of gut samples, you might define subcategories for different diets,
different physical locations/dates, different species, and/or different treatments like antibiotics or high fat. For sample data click here. For citation, click here.

Both the UniFrac distance metric and the P test can be used to make comparisons. Both of these techniques bypass the need to choose operational taxonomic units (OTUs)
based on sequence divergence prior to analysis.

Fast UniFrac allows you to:

® Determine if the samples in the input phy tree have 1tly different microbial communities.

® Cluster samples to determine whether there are environmental factors (such as temperature, pH, or salinity) that group communities together.

® Determine whether system under study was sampled sufficiently to support cluster nodes.

® Easily visualize the differences between samples graphically, with support for three dimensional exploration of datasets and with multiple subcategory coloring.

Please enter your email and password to continue. After you register you will be able to analyze up to 100000 unique sequences, up to 200
test based on up to 1000 tree permutations.

and perform

If you wish to analyze much larger datasets than the defaults, please contact us and we will be happy to try to accommodate you.

Fast UniFrac tutorial

Introduction

This tutorial takes you through the steps of analyzing data in the Fast UniFrac web application. The purpose of this tutorial is to show you how to use the interface to find the
important variables for describing phylogenetic variation among your samples: in this case, to test what types of physical or chemical factors are most important for structuring
bacterial diversity. The dataset used in this tutorial includes 50 of the 464 samples analyzed in Ley, RE, Lozupone, CA, Hamady, M, Knight, R and JI Gordon. (2008). Worlds
within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6(10): 776-88 (Pubmed). It includes sequences from 16S ribosomal RNA surveys of diverse
freeliving bacterial assemblages and the guts of diverse mammals and termites. At the end of this tutorial, you should be fully equipped to test hypotheses about your own
sequences.

Also included in this tutorial are other example files you may use to explore some of the other features of Fast UniFrac.
Example data files

To use Fast UniFrac, you need three files: a tree file, a sample id mapping file, and a category mapping file. The tree file contains a phylogenetic tree, in Newick format. The
sample id mapping file contains a table showing how many times each taxon (from the tree) occurred in each of your samples. The category mapping file contains additional
metadata about the samples, and is a table relating each sample to parameters you have measured such as temperature, pH, etc. In general, people usually prepare the two
mapping files using Excel, although it is important to save them as plain text format and not as Excel documents.

You can either generate your own tree file, or use one of the reference trees. The PhyloChip reference tree matches the probes on the PhyloChip and is useful for analyzing
PhyloChip data; the Greengenes reference tree is from the Greengenes core set and is a phylogenetically diverse and representative set of bacteria. These trees are built using
16S rRNA, although you can use trees built from any molecule, not just the 16S, or even trees constructed from morphological or other data.
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Unifrac Significance (version 1.0)
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PCoA Uses the UniFrac metric to
perform principal coordinates
analysis on your samples, allowing
you to see whether different types
of samples are separated in
different dimensions.

P Test Significance Tells you which
pairs of samples are significantly
different using the P Test.

Sample counts Tells you how many
sequences are in each sample.

Sample Distance Matrix Shows you
the UniFrac distances between
each pair of samples and is used
as input for sample clustering and
PCoA.

Unifrac Significance Tells you
which pairs of samples are
significantly different using the
UniFrac significance test.
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Calculating the UniFrac metric: The majority of options in the FastUniFrac interface make comparisons based on the UniFrac
metric. The UniFrac metric measures the difference between two samples in therms of the branch length that is unique to one
sample or the other. In the tree on the right (panel C below), the division between the two samples (labeled red and blue) occurs
very early in the tree, so that all of the branch length is unique to one sample or the other. This results in the maximum UniFrac
distance possible, 1.0. In the tree on the left, every sequence in the first samples has a very similar counterpart in the other
samples, and all of the branch length in the tree comes from nodes that have descendants in both samples. The results in the
minimum UniFrac distance of 0.0. In the middle example, there is about as much branch length unique to each sample (red or
blue) as is shared between samples (purple), so the UniFrac distance would be about 0.5.
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Back to the core questions

* Structure of the microbiome?
e Function of the microbiome?

« How can it be changed?
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Models of a core microbiome
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Does diet affect microbial
composition?
 Genetically Obese mice harbor a

significantly different community than
lean conventional mice

ntage of total sequenc

Perce

+/+ ob/+ ob/ob
Lean Lean Obese



Diet affects microbial composition
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Correlation of diet and gut microbial taxa
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The Human Microbiome

Gastrointestinal
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If taxonomy is not conserved,
what does that mean for
function?

 Functional core?
* Interchangeable parts?



Comparison of taxonomic and
functional variations
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Host-gut microbiota metabolic interactions
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Host-gut microbiota metabolic interactions

Is engineered homeostasis
achievable?
- C. difficile transplants

J K Nicholson et al. Science 2012;336:1262-1267



Do you trust the microbiome?

5 questions:

1) Can experiments detect differences that matter?
2) Do studies show causation or just correlation?

3) What is the mechanism?

4) How much do experiments reflect reality?

5) Could anything else explain the results?



Evaluation of a diagnostic test

» Sensitivity

 Specificity



Calculating sensitivity and specificity

True disease

Sensitivity = a/(a+c) d/(b+d) = Specificity
10/15 83/85



Test Accuracy

True disease

Accuracy =
88/100 = 88%

Prevalence =
30/100 = 30%
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Sensitivity and Specificity and Predictive values

True disease

Positive

Predictive &/(a+b)
Value = 20/22 1‘
10/12

Negative
Predictive d/(c+d)

Value=  68/78
83/88

Sensitivity = 67% 98% = Specificity



Liklihood ratios - diaghostic utility of a test

True disease

Liklihood
Ratio for a
Positive Test= a/a*c
1-(d/b+d)
33 5 =_20/30
' 1-(68/70)
Liklihood
Ratio for a
Negative Test= 2_/(2{3%)

0.33 = 1-(20/30)
Sensitivity = 67% 98% = Specificity 68/70




Comparing tests?

» When is a test with high sensitivity
most useful?

* When is a test with high specificity
most useful?



