
20.109 Intro to R & Clustering
Amanda Kedaigle, Ernest Fraenkel

3/3/2017

Part 1 - Introduction to R

We’ll be analyzing data from RNA-seq experiments on DNA repair performed by your instructors next time.
Today, let’s get familiar with the tools we’ll use to do it.

We’ll perform the analysis using the programming language called R1. R is free to use and is quite popular
for scientific computing. There is a collection of tools for R written for bioinformatics in particular, including
RNA-seq data analysis, called Bioconductor. We’ll be using R through a interface that we’ve installed on
your computers called RStudio.

1. Installing R – We’ve installed R and RStudio on the lab computers for you but if you are interested
in getting them for your own computers, you can download them from their websites, www.r-project.org
and www.rstudio.org.

2. RStudio Layout – Open up RStudio by clicking on its icon in your Dock. The RStudio interface
consists of several windows.

• Bottom left: console window (also called command window). Here you can type simple commands
after the “>” prompt and R will then execute your command. This is the most important window,
because this is where R actually does stuff. You can try it out by using R as a calculator. Try
typing a simple command in this window, i.e. “2+2”. Hit enter and R should calculate the answer
for you.

• Top left: editor window (also called script window). Collections of commands (scripts) can be
edited and saved. When you don’t get this window, you can open it with File → New → R script.
Just typing a command in the editor window is not enough, it has to get into the command window
before R executes the command. If you want to run a line from the script window (or the whole
script), you can click Run or press CTRL+ENTER while your cursor is in that line to send it to
the command window. In addition to scripts, you can read “R Markdown” files in this window.
This pdf file was created with an R Markdown file. To follow along with this tutorial in the Editor
window, you can use File → Open to open this Rmd file (“20.109_RNAseq_Analysis_Day6.Rmd”).

• Top right: workspace / history window. In the workspace window you can see which data and
values R has in its memory. You can view and edit the values by clicking on them. The history
window shows what has been typed before. There’s nothing there yet, but there will be.

• Bottom right: files / plots / packages / help window. Here you can open files, view plots (also
previous plots), install and load packages or use the help function.

3. Working Directory - Your working directory is the folder on your computer in which you are currently
working. When you ask R to open a certain file, it will look in the working directory for this file, and
when you tell R to save a data file or figure, it will save it in the working directory. Before you start
working, please set your working directory to where your Day6 data files were stored. Type in the
command window (you should replace the path with the correct one for your computer):
setwd("~/Desktop/RNA-seq data analysis/")

Within RStudio you can also go to Tools → Set working directory.

4. Libraries – R can do many statistical and data analyses. They are organized in so-called packages or
libraries. With the standard installation, most common packages are installed. We’ll need to load some
packages from Bioconductor. Go to the packages tab in the bottom right window of RStudio. Packages

1These instructions for learning R are adapted from “A (very) short introduction to R” by Paul Torfs and Claudia Bauer.

1

listed in this window are installed, and if the checkbox next to them is ticked, the package is loaded
(activated) and can be used. Load the package pheatmap, which we’ll later use to analyze our data.
You can either click Install and then check the box next to pheatmap, or run the following code.
install.packages("pheatmap")
library("pheatmap")

5. Workspace – In addition to using R like a simple calculator, you can also give numbers a name. By
doing so, they become so-called variables which can be used later. For example, you can type in the
command window:
a=4

You can see that a appears in the workspace window, which means that R now remembers what a is2.
You can also ask R what a is (just type a ENTER in the command window):
a

[1] 4

or do calculations with a:
a*5

[1] 20

If you specify a again, it will forget what value it had before. You can also assign a new value to a
using the old one.
a = a + 10
a

[1] 14

If you want to remove the variable a, you can type rm(a). To remove all variables from R’s memory,
click “clear all” in the workspace window.

6. Scalars, vectors, and Matrices – Like in many other programs, R organizes numbers in scalars (a
single number – 0-dimensional), vectors (a row of numbers, also called arrays – 1-dimensional) and
matrices (like a table – 2- dimensional). The a you defined before was a scalar. To define a vector with
the numbers 3, 4 and 5, you need the function c, which is short for concatenate (paste together).
b = c(3,4,5)

7. Functions – If you would like to compute the mean of all the elements in the vector b from the example
above, you could type
(3+4+5)/3

[1] 4

But when the vector is very long, this is very boring and time-consuming work. This is why things
you do often are automated in so-called functions. Some functions are standard in R or in one of the
packages. You can also program your own functions. When you use a function to compute a mean,
you’ll type:
mean(x=b)

[1] 4
2Some people prefer te use <- instead of = (they do the same thing). <- consists of two characters, < and -, and represents

an arrow pointing at the object receiving the value of the expression.

2

Within the brackets you specify the arguments. Arguments give extra information to the function. In
this case, the argument x says of which set of numbers (vector) the mean should be computed (namely
of b). Sometimes, the name of the argument is not necessary: mean(b) works as well.

The function rnorm, as another example, is a standard R function which creates random samples from
a normal distribution. It takes an argument specifying how many random numbers you want.
rnorm(10)

[1] 0.3140158 1.3025154 0.7756215 0.8524855 1.6943134 0.6711286
[7] 0.6243817 0.8627632 1.0643345 -1.9085113

Entering the same command again produces 10 new random numbers. Instead of typing the same
text again, you can also press the upward arrow key (↑) to access previous commands. If you want 10
random numbers out of normal distribution with mean 1.2 and standard deviation 3.4 you can type
rnorm(10, mean=1.2, sd=3.4)

[1] 2.45404703 1.84726473 4.65499478 1.24619719 0.34036756
[6] 0.43016766 -0.07136899 -2.84339109 1.40922196 2.42657532

showing that the same function (rnorm) may have different interfaces and that R has so called named
arguments (in this case mean and sd). By the way, the spaces around the “,” and “=” do not matter.
Comparing this example to the previous one also shows that for the function rnorm only the first
argument (the number 10) is compulsory. R gives default values to the other so-called optional
arguments. RStudio has a nice feature: when you type “rnorm(” in the command window and press
TAB, RStudio will show the possible arguments. You can also get more information about any function
and its arguments by typing “help(rnorm)” and see examples of its use by typing “example(rnorm)”.

8. Scripts – R is an interpreter that uses a command line based environment. This means that you have
to type commands, rather than use the mouse and menus. You can store your commands in files, the
so-called scripts. These scripts have typically file names with the extension .R. You can open an editor
window to edit these files by clicking File and New or Open file. . . You can run (send to the console
window) part of the code by selecting lines and pressing CTRL+ENTER or click Run in the editor
window. If you do not select anything, R will run the line your cursor is on. You can always run the
whole script with the console command source. You can insert comments into your scripts by starting
lines with the # sign. These lines will not be run in the console. You can use them to make your scripts
more readable by other users, and to leave notes for yourself in the middle of your code. #Here’s a
comment that won’t be included in the pdf!

9. Data Structures – Here are some basic ways to save your data in structures.

• Vectors were already introduced, but they can do more:
vec1 = c(1,4,6,8,10)
vec1

[1] 1 4 6 8 10

creates a vector with the given data points.
vec1[5]

[1] 10

This line prints the 5th element in the vector called vec1.
vec1[3] = 12
vec1

[1] 1 4 12 8 10

This line changed the 3rd element of the vec1 vector by accessing it with the vectorname[i] format.

3

vec2 = seq(from=0, to=1, by=0.25)
vec2

[1] 0.00 0.25 0.50 0.75 1.00

The seq function is another useful way to construct vectors.
sum(vec1)

[1] 35

vec1+vec2

[1] 1.00 4.25 12.50 8.75 11.00

These lines show some useful vector calculations.

• Matrices are nothing more than 2-dimensional vectors. To define a matrix, use the function matrix:
mat=matrix(data=c(9,2,3,4,5,6),ncol=3)
mat

[,1] [,2] [,3]
[1,] 9 3 5
[2,] 2 4 6

The argument data specifies which numbers should be in the matrix. Use either ncol to specify the
number of columns or nrow to specify the number of rows. Matrix-operations are similar to vector
operations:
mat[1,2]

[1] 3

You can access matrix elements with matrixname[row,column].
mat[2,]

[1] 2 4 6

When you want to select a whole row, you leave the spot for the column number empty (the other way
around for columns of course).
mean(mat)

[1] 4.833333

• Data frames are matrices with names above the columns. This is nice, because you can call and use
one of the columns without knowing in which position it is.
t = data.frame(x = c(11,12,14), y = c(19,20,21), z = c(10,9,7))
t

x y z
1 11 19 10
2 12 20 9
3 14 21 7

mean(t$z)

[1] 8.666667

mean(t[["z"]])

[1] 8.666667

4

These lines show two ways of how you can select the column called z from the data frame called t.

10. Plotting - R can make graphs. Here is a very simple example, plotting a vector of 100 random numbers.
x = rnorm(100)
plot(x)

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

x

You can also play around with how the graph looks using arguments to the plot function. Here, we
change the color and using a line instead of circles (the symbol between quotes after the type=, is the
letter l, not the number 1) :
plot(rnorm(100), type="l", col="gold")

0 20 40 60 80 100

−
2

−
1

0
1

2

Index

rn
or

m
(1

00
)

Another very simple example is the classical statistical histogram plot, generated by the simple

5

command
hist(rnorm(100))

Histogram of rnorm(100)

rnorm(100)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

20

To learn more about formatting plots, search for par in the R help. Google “R color chart” for a pdf file
with a wealth of color options. To copy your plot to a document, go to the plots window, click the “Export”
button, choose the nicest width and height and click Copy or Save.

11. Reading and Writing Data Files – There are many ways to write data from within the R environment
to files, and to read data from files. We will illustrate one way here. The following lines illustrate the
essential:
d = data.frame(a = c(3,4,5), b = c(12,43,54))
d

a b
1 3 12
2 4 43
3 5 54

write.table(d, file="tst0.txt",row.names=FALSE)
d2 = read.table(file="tst0.txt", header=TRUE)
d2

a b
1 3 12
2 4 43
3 5 54

12. Missing Data – When you work with real data, you will encounter missing values because instrumen-
tation failed or because you didn’t want to measure in the weekend. When a data point is not available,
you write NA instead of a number.
j=c(1,2,NA)

Computing statistics of incomplete data sets is strictly speaking not possible. Maybe the largest value
occurred during the weekend when you didn’t measure. Therefore, R will say that it doesn’t know what
the largest value of j is:

6

max(j)

[1] NA

If you don’t mind about the missing data and want to compute the statistics anyway, you can add the
argument na.rm=TRUE (Should I remove the NAs? Yes!).
max(j, na.rm=TRUE)

[1] 2

Part 2 - Clustering

An important technique in many bioinformatic analyses is clustering, a way to assign similar samples to
groups. We’ll explore two types of clustering by hand before returning to R.

1. Hierarchical Clustering builds a hierarchy of clusters. In the agglomerative, or bottom-up, method
of hierarchical clustering, the two most similar samples or clusters are joined into one cluster repetitively.
Work out the hierarchical clustering of the following 2D data points, using Euclidean distance (the
length of a straight line between two points) and complete linkage (once a cluster contains more than
one point, calculate the distance between two clusters as the longest distance between any two points in
the respective clusters). Show each step, and when you’re done, draw a dendrogram to show the results.

Point 1: (0,0)

Point 2: (3,0)

Point 3: (0,6)

Point 4: (21,2)

Point 5: (23,2)

Now, open the script “intro_clustering.R” and run the code for Problem 1 to see if you get the same
dendrogram as R. Save your heatmap to a jpeg image file by clicking Export in the Plots window.

2. K-means Clustering is another clustering technique. In this algorithm, you decide ahead of time on
a value for k, which is the number of clusters you’ll get. You randomly choose k points to be the center
or “centroid” of each cluster, and then iteratively assign nearby points to those clusters. Once a cluster
has more than one point, the “centroid” is the average of the points in that cluster. Cluster the above
points by k-means clustering, with k=3 by hand. Show your work.

• Use points 3, 4, and 5 as your initial centroids.
• Use points 1, 3, and 4 as your initial centroids.
• Finally, try out the code in intro_clustering.R and save your colored plot as a jpeg image.

3. Principal Components Analysis is another technique, in which the data points (which often have
more dimentions than our 2D points) are projected onto the 2D plane such that they spread out in the
two directions that explain most of the difference between them. The x-axis (PC1) is the direction that
separates the data points the most. The y-axis (PC2) is a direction (it must be orthogonal to the first
direction) that separates the data the second most. The percent of the total variance that is contained
in the direction is printed in the axis label. Here we’ll use R to cluster a larger high-dimensional dataset.
Use the code in intro_clustering.R to generate a random dataset for 15 samples, with information on
100 genes each. Create a heatmap and run principal components analysis on these data.

• After hierarchical clustering, save your heatmap as a jpg file. What are the two most similar samples to
sample 7?

• Now run principle components analysis on this data. Save the individuals factors graph to a jpeg
image. Are the same samples the most similar to sample 7 with this technique? Notice how much of
the variation is explained in this 2-D chart. Do you think this is a good representation of the data?

7

	Part 1 - Introduction to R
	Part 2 - Clustering

