Module 2:
Manipulating Metabolism

dCas9 and the CRISPRi system
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ldentifying the cleavage target of Cas9

e Adaptive immune response that confers
phage resistance

* Requires crRNA, tracrRNA, and Cas9

What is the target of the native system?

Incoming viral DNA or host-transcribed viral
MRNA?



Lytic phage infection in bacteria
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DNA vs RNA debate

. '

Many in researchers in
phage community
convinced RNA
interference by CRISPR .
too inefficient given
explosive replication of
phage during infection




Data support that Cas9 cleaves DNA

1. Targets to ‘sense’ DNA more efficient than
those to ‘anti-sense’

2. Transformation of plasmid DNA blocked

3. Presence of self-splicing RNA sequence in
DNA target abolished CRISPR activity



HNH and RuvC endonuclease domains

e RuvC

— Endonuclease that resolves Holliday structure,
intermediate structure in which dsDNA molecule
is linked by single-stranded crossover

* HNH

— Found in homing endonucleases, restriction
endonucleases, transposases



How would you identify which domain
is required for DNA cleavage?



Cleavage requires HNH and RuvC domains
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Jinek et al. (2012) Science. 337:816-820.



HNH and RuvC domains target specific
DNA strands

complementary non-complementary

strand strand
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Jinek et al. (2012) Science. 337:816-820.



Schematic of Cas9 DNA cleavage

e RuvC domain Proto-spacer PAM
(D10A) cleaves |
non-coding strand -

* HNH domain
(H840A) cleaves
coding strand

e Resultin blunt end
cut 3 bp from PAM site



dCas9 binds target DNA sequence

target DNA duplex WT
Cas9-RNA complex (nM) —o°~ »® S »S°°

bound =& N

How can this variant be
used for gene regulation
and pathway
manipulation?

unbound—=> "W

Jinek et al. (2012) Science. 337:816-820.



Testing the effect of dCas9 on transcription

NT1 NT2 NT3

Non-template strand
Template strand RBS mRFP 4Term

T1 T2 T3
* Red fluorescent protein (RFP) cloned into
E. coli genome

* gRNAs designed to target non-template strand
and template strand within RFP sequence

E. coligenome



dCas9 inhibits transcript elongation
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Lei et al. (2013) Cell. 152:1173-1183.



dCas9 inhibits transcript initiation
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Lei et al. (2013) Cell. 152:1173-1183.



Testing dCas9 induction control switch

: @

+ anhydrotetracycline (aTc)

Tet Repressor (TetR)
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Tet Response Element (TRE)

e aTcinduction mechanism enables
manipulation to be turned on and off



Inducible promoter can be used to control
dCas9-mediated gene expression
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Will CRISPRi regulate native pathway?
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Yes!
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CRISPRi collision model
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Future applications for Cas9

* Targeting proteins to dsDNA to mediate
biology ‘numbers game’

— Recruit or prevent transcription factor binding

— Direct chromatin-remodeling factors

* Fine-tuning the CRISPR system
— Examine efficiency biases of spacer sequences
— Decrease off-target Cas9 cleavage



In the laboratory...

* Journal club presentations
— Meet at 1p in 16-336 for M2Q1

“Welcome to Journal
Club. The first rule of
Journal Club is: you
practice. The second
rule of Journal Club is:
you practice even
more.”

- Former 109er




