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Here’s how you will treat your cells today

Flgure from'Lizzie Ngo _ o
Graduate Student * Etoposide to inhibit Topoll

Engelward Lab leading to DNA DSBs

& Samson Lab

& DLD 1 Ce"s  Compound 401 to inhibit

Non Homologous End

A~BRGA2 / cells Joining (NHEJ)

* Etoposide + Compound 401

* Olaparib to inhibit PARP1
to stabilize DNA SSBs
leading to DNA DSBs at
collapsed replication forks

[CANCER RESEARCH 39, 1020-1025, March 1979)
0008-5472/79/0039-0000$02.00 '



Key Experimental Methods for
Module 2

» Grow human cancer cells in tissue cell culture

* Monitor specific protein levels by Western blot

* Kill cancer cells with chemotherapy drugs

* Engineer the inhibition of DNA Repair pathways
* Monitor changes in a gene’s expression (QPCR)

* Analyze RNAseq dataset measuring expression
of ~ 20,000 genes (BIG DATA!)

« Statistical analysis of all biological data



Six Major DNA Repair Pathways
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Six Major DNA Repair Pathways
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All known life forms are based on DNA

Eukarya
Animals
Archaea
Fungi 0
Bacteria Slime molds Plantsw-?;" &
™ Ciliates
Halophiles Flagellates
Purple bacteria Gram-positives - =
Methanococcus Microsporidiae

; Thermoproteus
Cyanobacteria

Flavobacteria

http://biologicalphysics.iop.org/cws/article/lectures/47042



CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats
CAS genes — CRISPR ASsociated genes

Prokaryotic cell
Stage 1: Foreign DNA acquisition p
~ ~

& &
cas genes & &  CRISPR locus

/4 H.‘.‘D‘ .h @ @ Stage 3.:

RNA-guided

@ @ targeting of

l CRISPR locus transcription viral element

T
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Stage 2: CRISPR RNA processing

http://rna.berkeley.edu/crispr.html



Non Homologous End Joining
is REQUIRED for a functional
mammalian immune system!
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Eﬁw T-he Immune Response
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1
Activation of the immune response typically begins when a pathogen enters the
body. Macrophages that encounter the pathogen ingest, process and display the
antigen fragments on their cell surfaces.

Copyright © The McGraw-Hill . Companies, Inc.

http://highered.mcgraw-hill.com/sites/0072495855/student viewQ/chapter24/animation_ the immune response.html




The body contains millions of different T-cells and B-cells,
each able to respond to one specific antigen.

Humoral
Self-nonself lmmun!ty
complex (sef:retlf)n of
T cell Interleukin-2 antibodies by

receptor stimulates plasma cells)

Micrc()be‘ Macrophage q fL\ cell division -
/ "9& /m\-\‘\e 0

0 Interleukin-2
. 4V | activates
{ \/:*QV — | 0 / Helper
AV \& , | Tecell other B cells
[4) @ Y\ and T cells
> Self protein ! / — p .. N &
) / ] Cell-mediated
Antigen from microbe Antigen-presenting |nterleukin-1 Binding Binding | $‘2:|:°x'° immunity
(nonself molecule) cell stimulates site for site for (attack on

helper T cell  antigen self protein infected cells)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

http://www.austincc.edu/apreview/Emphasisitems/Inflammatoryresponse.htmI|#ANTIB



The body contains millions of different T-cells and B-cells,
each able to respond to one specific antigen.
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Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

http://www.austincc.edu/apreview/Emphasisitems/Inflammatoryresponse.htmI|#ANTIB



Antibodies work in different ways

Binding of antibodies to antigens
inactivates antigens by
|

‘

Neutralization

v

v

N

(blocks viral binding
sites; coats bacteria)

Agglutination
of microbes

Precipitation of
dissolved antigens

Activation of
complement system

Virus
=72

Bacteria

/7, Complement
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Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.
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“ANTIGEN" comes from ANTI-body GENerating substances

Antigen-binding
}/\ - \K

O/ A <. V = Variable

Light
— chain

C = Constant

Heavy
chain

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved

http://www.austincc.edu/apreview/Emphasisltems/
Inflammatoryresponse.htmI#ANTIB

B-cell Immunoglobulin



“ANTIGEN" comes from ANTI-body GENerating substances

Antigen Binding Site
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How Do the Variable Regions become Variable?
Through Programmed NHEJ!!

Heavy chain genome sequence (V, D, J) Light chain genome sequence (V, J)

R d DNA .
e p ’ V -variable,
/7 . .
g J D - diversity
I Y4
] g
| — : TR
1 K Combined binding site gene
\
P S Tehr. segments
An antibody is made up I Bn  “constant region”

of pairs of heavy and light chains 4



How Do the Variable Regions become Variable?
Through Programmed NHEJ!!

Germline cenfiguration
V segments D segments J segments Constant region exons

D to J recombination I 4

V to DJ recombination W 5

S
-

transcription, splicing

vDJ recombination translation, assembly

(adapted rom Janeway 2001)



How Do the Variable Regions become Variable?
Through Programmed NHEJ!!

a-chain locus
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Figure 5.3 The Immune System, 3ed. (© Garland Science 2009)



V(D)) Gene Recombination

http://www.youtube.com/watch?v=QTOBSFJWogE




Recognition, Binding and
Cleavage at RSS by RAG1/2
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How Do the
Variable Regions
become Variable?

Through NHEJ
mediated DNA
Recombination!

The rearrangement
starts with the binding of products
from recombination activating
genes RAG1 and RAG2, whose
expression is unique to lymphoid
progenitor cells

Immunologic Research
December 2012, Volume 54, Issue 1-3, pp 233-246



The body contains millions of different T-cells and B-cells,
each able to respond to one specific antigen.
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How Variable is Variable?

Number of functional gene segments
in human immuniglobulin loci
light chains heavy chain
Segment

K A H

Variable (V) 40 30 65
Diversity (D) 0 0 27
Joining (J) 5 4 6

Over 15,000,000 combinations of variable, diversity
and joining gene segments are possible. Imprecise
recombination and mutation increase the variability
into billions of possible combinations.



How Variable is Variable?

T cell receptor

o B
Number of V 54 67
gene segments
Number of diversity (D) 0 2
gene segments
Number of joining (J) 61 4

gene segments

Over 3,000,000 combinations of variable, diversity
and joining, V(D)J, gene segments are possible.
Imprecise recombination and mutation increase the
variability into billions of possible combinations.



What happens if mice or people lose NHEJ capacity?



What happens if mice or people lose NHEJ capacity?

NHE) gene

XRCC6
(encoding Ku70)

XRCC5
(encoding Ku80)

PRKDC (encoding
DNA-PKcs)

DCLRE1C

(encoding
Artemis)

NHE]J1 (encoding
XLF)

XRCC4

LIG4

Mouse knockout phenotype

Viable, SCID, small size, radiosensitivity and
thymoma*®*

Viable, SCID, small size, radiosensitivity, genomic

instability and tumours, especially with p53 deletion*”*>>*

Viable, SCID, some genomic instability and tumours
with p53 (REFS 55-57)

Viable, SCID, radiosensitivity and genomic instability*®

Mild lymphocytopaenia and radiosensitivity®?

Nullis lethal with neuronal apoptosis; rescue with p53
results in SCID, radiosensitivity, early B lymphoma and
genomic instability**®*

Knockout is lethal with neuronal apoptosis; rescue with
p53 results in pro-B lymphoma and radiosensitivity;
hypomorph is small, lymphopaenic and has reduced
haematopoietic stem cell function®*%®

Patient phenotype

None known
None known

Human hypomorph has SCID and
radiosensitivity*®

Null results in SCID and radiosensitivity;
hypomorph shows reduction in
lymphocytes, genomic instability and
lymphoma®¢

Cernunnos syndrome; immunodeficiency,
developmental delay, microcephaly,
reduced growth and genomic instability®

None known

LIG4 syndrome; immunodeficiency,
reduced growth, developmental issues,
microcephaly and malignancy®%

DCLRE1C, DNA cross-link repair 1C; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; LIG4, DNA ligase 4; NHE],
non-homologous end-joining; NHEJ1, NHE] factor 1; PRKDC, protein kinase, DNA-activated, catalytic polypeptide; SCID, severe
combined immunodeficiency; XLF, XRCC4-like factor; XRCC, X-ray repair cross-complementing protein.



Can V(D)J Recombination Go Wrong?

() 1): <

NHE)J
(delayed)
Rag cleavage ——v[
Persistent
DNA ends or
~ Cell death
—v] — | (p53)
NHEJ \
Y Aberrant joining
(v = —{(I—1V|onc

/h Helmink BA, Sleckman BP. 2012.
Annu. Rev. Immunol. 30:175-202




BURKITT’s LYMPHOMA
B-cell Lymphoma

Normal Burkitt's
chromosomes lymphoma
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Other B-cell Lymphomas
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Cancers arise from the accumulation

Normal — Neoplasi — Invasive —* Metastas
Epithelium eOPIasIa - carcinoma elastasis
\) N ., N /A
1st 2nd Additional
Mutation Mutation Mutations

Invasive
In situ cancer
Cell with cancer ;

mutation Dysplasia

Hyperplasia




The Genetic Basis of Cancer and
Theodor Boveri 1862 - 1915

e Established that chromosomes carry the
hereditary information by showing that
aberrant segregation of chromosomes
leads to certain phenotypes in sea urchin

eggs.

e Suggested that aberrant segregation of
human chromosomes could be
responsible for a normal cell becoming a
tumor cell

e Suggested that some chromosomes
promoted cell growth and others inhibit
cell growth

Marcella O’Grady Boveri (1865-1950) also contributed



Marcella O’Grady Boveri
(1863-1950) also
contributed to Boveri’s
theory

She was the first woman
student to graduate
from MIT with a Biology
Major in 1885!

J Med Genet. 1985;22(6):431-40.
Marcella O'Grady Boveri (1865-1950)
and the chromosome theory of cancer
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Chromosomes from a BRCA1 deficient
Breast Tumor Cell
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The Genetic Basis of Cancer and
Theodor Boveri 1862 - 1915

e Established that chromosomes carry the
hereditary information by showing that
aberrant segregation of chromosomes
leads to certain phenotypes in sea urchin

eggs.

e Suggested that aberrant segregation of
human chromosomes could be
responsible for a normal cell becoming a
tumor cell

e Suggested that some chromosomes
promoted cell growth and others inhibit
cell growth

Marcella O’Grady Boveri (1865-1950) also contributed



Alterations (mutations) in different kinds of
Genes cause Cancer

Oncogenes
genes that ordinarily promote cell proliferation but when
mutated or overexpressed promote uncontrolled growth

Tumor suppressor genes
genes that ordinarily prevent inappropriate proliferation
but when mutated allow uncontrolled growth

Mutator genes
genes that ordinarily prevent mutations; alterations in
these genes allow increased mutation rates



Lack of DNA repair accelerates the onset of cancer

Cumulative cancer incidence (%)

XP population

Non-XP population

20 30 40 50 60 70 80 90
Age (years)

Nature Reviews |



Mechanisms of Chromosome Translocation
Before translocation After translocation

Derivative

Chromosome 20 il Chromosome 20

Derivative
Chromosome 4

Chromosome 4



Chronic Myelogenous Leukemia

Normal Translocation
chromosome 9 t(9;22)

Normal
chromosome 22

NHE) | ‘
+ q11.2 = * (BCR)

Philadelphia
chromosome

q34.1 (C-ABL)

Breakpoint Cluster Region protein (BCR)
C-Abl non-receptor tyrosine kinase — stimulates cell growth



Janet Rowley

(April 5, 1925 — December 17, 2013)

American human geneticist and the
first scientist to identify the
mechanism by which a chromosomal
translocation causes Leukemia and
other cancers.




Six Major DNA Repair Pathways

NATURE REVIEWS | CLINICAL ONCOLOGY VOLUME9 | MARCH 2012
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Chromosomes from a Pancreatic Tumor Cell







How does
the cell
decide
which

pathway to
use?



The Cell Cycle

Daughter

Intracellular
quality con’rr'
checks ”

Duplication of chromosomes
DNA Replication



Progression through the Cell Cycle REQUIRES a series
of cyclins and cyclin-dependent-kinases (CDKs)

1
] 1
I Cyclin A i
1

Cyclin
B/A + CDC2

Konzentration

G,-Phase S-Phase G,-Phase Mitose
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the cell
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which

pathway to
use?
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Disposition of DSBs between repair pathways.
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Chiruvella K K et al. Cold Spring Harb Perspect Biol
©2013 by Cold Spring Harbor Laboratory Press 2013;5:a012757



Double-Strand Break Repair via
Single Strand Annealing — Alternate

http://web.mit.edu/enge'yvard- ab/animations/SSA.html

Engelward lab Animations



Disposition of DSBs between repair pathways.
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DNA damage——Cell Death ____ nropasE
—‘— Mutation

DNA
repair



DNA damage——C¢ll Death _____ prgpasE

| —‘— Mutation
Cell DNA
cycle = repair

arrest



Cyclin
B/A + CDC2



The DNA Damage Response - DDR

Cellular
Metabolism

UV Light
Exposure

Cell Cycle Checkpoint
Activation

lonizing
Radiation

Chemical
Exposure

Transcriptional
Program Activation

Replication
Errors

DNA Repair

+ Direct reversal

+ Base excision repair

» Nucleotide excision repair

« Mismatch repair

» Double strand break repair
* Homologous recombination
* Non-homologous end joining

https://www.rndsystems.com/resources/articles/dna-damage-response

Apoptosis

© R&D Systems, Inc.



The DNA Damage Response - DDR

DNA Replication
damage 511‘ / stress
T = SIGNALS
| SENSORS
TRANSDUCERS
\%/ \ EFFECTORS
Cell cycle Apoptosis Transcription DNA repair
transitions

http://www.nature.com/nature/journal/v408/n6811/full/408433a0.html




P53 Regulates the transcription of MANY genes in
MANY pathways

Stress Signals
(DNA Damage, Oncogene Activation, Hypoxia)

l
S O

lPTMs (Ac, Ph, etc.)

Inactive
p53

Active

Cell cycle arrest
(p21, GADD45)

Apoptosis
(Bax, Bak, PUMA)

DNA Repair
(p48, POLK)

Senescence
(PML, PAI-1)

Autophagy
(Atg7, Dram)

Metabolism
(TIGAR, GLS2)

p53

p53 Responsive
Element

p53 Target
Gene

Angiogenesis
(GD-AIF, BAI-1)

Migration
(Rad, FOXF1)

Metastasis
(Maspin, PAI-1)

http://www.mdpi.com/2072-6694/7/1/30/htm



Activated p53 Target Genes

Basic @ Structural © Contact
mutations mutations

Cancer hot-s;ot mutations @
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* RNA pol Il
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Stem cell biology:
e Cdknla e mir-34b/34c
* mir-145 ¢ Notch1
* mir-34a

Nature Reviews | Cancer

http://www.nature.com/nrc/journal/v14/n5/fig_tab/nrc3711_F3.html



ATM and ATR protein kinases are activated by
DNA damage

Cyclin

DNA Damage BIA + CDC2
Cyclin
D’s + CDK2
Cyclin CDK4
CDK5

1 (Nuclear
Export)
P P P P
activated @/ BRCA @ W/ 14-3-3
p53 Degradation ‘
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/‘ "
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© R&D Systems, Inc.

Arrest

https://www.rndsystems.com/resources/articles/dna-damage-response
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DNA damage——C¢ll Death _____ prgpasE
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Ataxia Telangiectasia patients — Cancer Prone

ATM kinase gene
mutated

Defective DNA
Damage Responses
can affect both
neurodegeneration
and cancer
susceptibility




Ataxia Telangiectasia patients
ATM gene mutated

Staggering gait

Muscular un-coordination
Mental retardation

Dilation of small blood vessels
Immune dysfunction

Cancer prone...lymphomas

Cells from AT patients have lost cell cycle
checkpoints and have abnormal DDR




Six Major DNA Repair Pathways

Single-strand break
Single-base damage
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ATM and ATR protein kinases are activated by
DNA damage

Cyclin

DNA Damage BIA + CDC2
Cyclin
D’s + CDK2
Cyclin CDK4
CDK5

1 (Nuclear
Export)
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Key Experimental Methods for
Module 2

» Grow human cancer cells in tissue cell culture

* Monitor specific protein levels by Western blot

* Kill cancer cells with chemotherapy drugs

* Engineer the inhibition of DNA Repair pathways
* Monitor changes in a gene’s expression (QPCR)

* Analyze RNAseq dataset measuring expression
of ~ 20,000 genes (BIG DATA!)

« Statistical analysis of all biological data
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