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ABSTRACT

Numerous studies in tissue engineering and biomechanics utilize fluid flow stimulation,
both unidirectional and oscillatory, in order to analyze the effects of shear stresses on cell
behavior. However, it has typically been assumed that these shear stresses are uniform and that
cell and substrate properties do not adversely affect these assumptions. With the increasing
utilization of fluid flow in cell biology, it would be beneficial to determine the validity of various
experimental protocols. Since it is difficult to determine the velocity profiles and shear stresses
empirically, we utilized the finite element method (FEM). By using FEM, we determined the
effects of cell confluence on fluid flow, the effects of cell height on the uniformity of shear
stresses, apparent shear stresses exhibited by cells cultured on various substrates, and the effects
of oscillatory fluid flow relative to unidirectional flow. FEM analyses could successfully
analyze flow patterns over cells for various cell confluence and shape and substrate
characteristics. Our data suggest the benefits of the utilization of oscillatory fluid flow and the
use of substrates that stimulate cell spreading in the distribution of more uniform shear stresses
across the surface of cells. Also, we demonstrated that cells cultured on nanotopographies are
exposed to greater apparent shear stresses than cells on flat controls when using the same fluid
flow conditions. FEM thus provides an excellent tool for development of experimental protocols

and the design of bioreactor systems.

8]
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INTRODUCTION

One of the key strategies in tissue engineering is mimicking the in vivo environment in
vitro to optimize cell growth and tissue formation. Typically, cells are cultured in vitro on flat
surfaces, such as tissue culture polystyrene, glass slides, etc. Not surprisingly, cells cultured on
these substrates behave differently than cells in vivo. A number of substrates that mimic the in
vivo environment have been produced. One method is an alteration of surface topography at
either a micro- or nanoscale using self-organizing or lithographic techniques. Topographical
changes become a key in controlling cell morphology, cytoskeletal organization, and protein
adsorption at the cell-surface interface. In addition to topographical engineering of substrates,
biofunctionalization allows a firm cell anchorage through peptide motifs that bind to integrins or
other cell adhesion molecules. Alternatively, these peptides can be covalently linked to the
surface, or peptide linkers can be used to bind these proteins to the material surface. Typically, a
combination of these biomimetic properties would be incorporated into the ideal substrate.
However. each property and technique must be analyzed independently (4.15.16).

Previous studies in our laboratory have demonstrated that polymer demixed
nanotopographies induce differential cell responses as a function of nanotopographic scale. For
example, human fetal osteoblastic cell (hFOB) adhesion and proliferation are significantly
greater on 10-30 nm high nanoislands than on flat control films (20.21). This demonstrates that
osteoblastic cells preferentially adhere to and grow on specific nanotopographies.  Also. we
found that surface nanoscale topography influences integrin and focal adhesion protein synthesis
by osteoblastic cells (23). These data demonstrate that substrate nanotopography is an important

mediator of initial cell adhesion, proliferation and potentially differentiation.
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In addition to nanotopography we have demonstrated that fluid-flow-induced shear stress
can increase bone cell, including mesenchymal stem cell, proliferation (29, 30). Furthermore, we
have shown that osteoblastic MC3T3-E1 cells cultured on 11-38 nm high nanoislands displayed
significantly greater elastic moduli relative to those cultured on flat polystyrene or plasma-
cleaned glass surfaces (32). This change in elastic modules would be expected to alter the
sensitivity of cells to biophysical signals. This led us to develop the hypothesis that a
combination of biophysical signals and surface nanotopography would result in increased
apparent shear stress effects possibly due to the increased elastic moduli of cells cultured on
nanotopographies. However, it is possible that culture of cells on nanotopographies alters the
shear stress to which the cells are exposed rather than affecting the cell’s sensitivity to shear
stress.  To address this we analyzed fluid flow profiles and induced shear stresses for cells
cultured under various conditions including on nanotopographies.

Fluid flow profiles and induced shear stresses can be analyzed with the help of the finite
element method (FEM, or finite element analysis) (1-9). FEM allows for the discretization of
complex geometries, allowing for greater flexibility, in the study of mechanics, than finite
volume methods. Typically, finite element analyses require the use of computer technology for
discrete approximations (10).

FEM requires the use of computational methods, and in this particular study COMSOL
Multiphysics (formerly FEMLAB) has been utilized. COMSOL is unique in that it can not only
analyze complex geometries by finite element analysis but it can also couple multiple physical
modules into a single geometry. The program was initially developed by Germund Dahlquist at

the Royal Institute of Technology in Stockholm, Sweden (12). This technique grants the ability

Page 4 of 60



Page 5 of 60

?wd version may ditfer from this proof.

59

ngineering Part C: Methods
ditions

on

Tissue E

id Flow C

(doi: 10.1089/ten. TEC.2009.01

in Cell Culture

copyeditin

ysis of Flu

Finite Element Anal

-reviewed and accepted for publi

¢ final publis

g and proof correction. Th

cation, but has yet to undergo

This article has been peer

to couple structure stress-strain analyses with the fluid mechanics of a geometry as implemented
by steady-state Navier-Stokes equations (13).

Finite element analyses are integral to the estimation of physical properties in complex
geometries. In tissue engineering, these analyses are commonly used for the simulation of
bioreactor systems. e.g.. spinning flask bioreactors and perfusion flow bioreactors. However,
fluid flow over cells cultured on nanoscale topographies has yet to be analyzed through finite
element methods. Regarding the simulation of flow perfusion bioreactors, the most common
method used for fluid flow stimulations is the Lattice-Boltzmann method, where physical three-
dimensional space is broken into a number of nodes. The important factor to consider, however,
is that fluid flow simulations with the Lattice-Boltzmann method simplifies the Navier-Stokes
equations to a second-order set of equations and assumes that all fluids are Newtonian fluids. As
a result, the calculations with these methods are very rough estimates (14). The methods used in
the literature were successful in the simulations of velocity fields through bioreactors, and in
these simulations shear stresses were coupled with velocities at the solid-fluid interface. In
coupling empirical data regarding scaffold properties and then analyzing flow fields, the flow
field properties existing within the flow perfusion bioreactors could thus be estimated. However,
most of the bioreactor studies omitted these simulation steps prior to bioreactor design.

In this study we completed FEM simulations of fluid flow profiles and induced shear
stress on cells under various cell and substrata conditions including cell confluence., cell height,
and substrate nanotopography. The objective was to compare these various cell properties under
both unidirectional and oscillatory fluid flow conditions to bring to light any differences in
biophysical signals imposed on cells. It was hypothesized that unidirectional flow will have

patterns leading to non-uniform stresses along surfaces not seen under oscillatory conditions.
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Additionally, fluid flow should impose more uniform stresses along the surfaces of cells with
lower height. Finally. experimental data describing the elastic moduli of cells cultured on various
substrates allows us to predict that these stiffer cells will have greater responses to biophysical
signals. This is to say that fluid flow will impose greater shear stresses on those cells with greater
elastic moduli. Such hypotheses have not been confirmed in the laboratory, and FEM provides
the best method to elucidate such questions.

FEM simulations are introduced as a novel method in tissue engineering not typically
used. By coupling experimental data with data created in silico, insights not typically witnessed
in the laboratory can be brought to light. Phenomena in fluid flow patterns and biophysical
signals witnessed in our laboratory have been elucidated in this manuscript. This method will
greatly help to optimize bioreactor design that utilizes fluid flow and nanotopographies in

musculoskeletal tissue engineering.

MATERIALS AND METHODS

COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, USA) was utilized to simulate
the two-dimensional microenvironment of cells cultured on nanoscale topographies. Included in
the comparison were varying levels of cell confluence from flat to 100% confluent, flow
patterns over cells that differ in cell height from 1.5 microns to 7.5 microns based upon the
geometry of human mesenchymal stem cells, effects of differing elastic moduli of cells cultured
on various substrata, and analyses of general flow patterns over generalized bumps in fluid flow.
The dimension of the flow chamber used in these simulations was set at L = 3 mm and the height

=0.7 mm.
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When comparing the cells cultured on multiple substrata, elastic modulus data from
Hansen et al. (32) were utilized as inputs for the moduli of cells on these surfaces. This approach
allowed for an indirect study of cell stress on multiple substrata without explicitly modeling the
various surfaces. Such an approach allows for a coupling of in vitro and in silico data from finite
clement analyses. Hansen’s study compared cell stiffness of human fetal osteoblastic (hFOB)
cells cultured on various substrata. It was assumed in this simulation that cells cultured on flat
polystyrene had an average modulus of 4000 Pa, those on plasma-cleaned glass had a average
modulus of 7000 Pa, cells on 11 nm nanoislands had an elastic modulus of 9000 Pa, and those
cultured on 38 nm nanoislands had a modulus of 12000 Pa. In using these data, the effects of
fluid flow over cells cultured on various substrata using the moduli as the independent variable
could be compared. This becomes interesting when considering two flat surfaces such as flat
polystyrene and plasma-cleaned glass that exhibit the same topographies but very different cell
stiffness responses. Furthermore, shear stresses along the surfaces of cells cultured on various
nanoscale topographies were compared by modeling the cell stiffness as opposed to the surface
morphology. In doing so, the required computing power and time to solution were greatly
reduced. Incompressible Navier-Stokes fluid flow was coupled with a stress-strain analysis to
determine the apparent shear stresses induced on the surfaces of these cells.

When analyzing oscillatory fluid flow, one must ensure that the flow remains laminar if
assumptions and equations are to hold. The maximum Reynolds number was 16.302 using the

following criteria:

Inlet Pressure: P, = 0.5k x cos(wt) + Py, (1)

Outlet Pressure: P,y = -0.5k < cos(wt) + Pym (2)

Constants: o = 21 rad/s: Pam = 131 kPa: k = 4000 N/n’ (3)
7
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The inlet and outlet pressures were increased by a positive atmospheric pressure (P,,) at
131 kPa, since it is assumed that atmospheric pressure acted at both ends of the bioreactor.
However, these pressures were opposite one another in the sinusoidal term. The angular
frequency of oscillation (w) was 2n rad/s, correlating to a period of oscillation of one second.
Additionally, this term was scaled by a constant (k) of 4000 N/m’. This number was chosen in
order to minimize the maximum Reynolds number and to simulate flow rates similar to those in
the laboratory.

The pressure difference in unidirectional flow was a constant at 47 = g5, where AP is

the pressure difference across the bioreactor, p is the density of the fluid in kg/m’ (in this case.
water was utilized with p = 1000 kg/m’), g is the acceleration due to gravity (¢ = 9.81 m/s®), and
L is the length of the bioreactor being simulated in meters.

The incompressible Navier-Stokes equations and the assumptions include:

p(Qu/o+puNu=V[-p/+ p(Vu+ (Vu)")]+ F (4)

Yu=20 (3)

u[Vu+ (Vo)™ =0 (6)
8
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In the first Navier-Stokes equation, terms can be broken down by those affected by

density (p), velocity (scalar u or vector u), and viscosity (p). The first term (p(0uldt)) is the

unsteady acceleration term, and the second term (puVu) is the convective acceleration term.

Together, these terms encompass the inertial component of fluid flow. The terms following the

del (V) operator correspond to the pressure gradient and viscous divergence of stress,

respectively. Finally, the variable F accounts for all other body forces in the fluid flow. It can

then be assumed that under incompressible conditions, the divergence of velocity (Tu! is zero.

With this being true. the viscosity term (u[Vu + (Vu)']) is also zero. This greatly simplifies the

Navier-Stokes equation to only unsteady acceleration, pressure gradient, and body force terms.
These equations for fluid flow analyses can then be coupled with a stress-strain analysis
to determine shear stresses throughout the two-dimensional microenvironment. In the analysis of

shear stresses, the normalized von Mises stress was used.
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The von Mises stresses find the differences in normal stresses (o) in all directions in
Cartesian coordinates. The subscripts X, y. and z refer to the particular face of a three-
dimensional surface upon which the normal force acts. Furthermore, the shear stresses (7) in all
directions are included in this equation. The subscripts xy, zx, and yz refer to the direction
(second subscript) along a particular face of a three-dimensional surface (first subscript). For
example, “xy” refers to a shear stress acting on the x-face in the y-direction. By adding the
squares of these terms, the square root of this sum is a normalized stress known as the von Mises
stress.

These von Mises stresses were then measured in COMSOL at the surface of the cell.
Such stresses act as biophysical signals leading to intracellular responses. For that reason, the
stresses resulting from the pressure in fluid flow act as an excellent indicator for cellular
response to fluid flow.

All of these data were then analyzed to determine flow patterns, values of shear stresses
at multiple locations, and the absolute flow rates in various geometries. Such simulations have
been summarized in Table 1, and the corresponding COMSOL model reports have been included

in the Supplemental Information (S.A, S.B. and S.C).

RESULTS
Finite Element Analysis of Fluid Flow: Cell Confluence Effects

Our simulation in COMSOL Multiphysics analyzed the effects of cell confluence on fluid
flow patterns using the unidirectional flow of media. Figure 1 depicts the macroscopic view of

flow over cells with varying levels of confluence. We note that cells are cultured on the

10
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substrate and the substrate is placed inside a flow chamber. The flow pattern inside the chamber
is displayed with colors and arrows, and the cells are shown as white semi-circles at the bottom
of the flow pattern. Note that there were very little differences in flow patterns within the
bioreactor, mostly with 50% and 100% confluence at the upper boundary of the bioreactor.
However, these differences in flow patterns were not detected in a macroscopic view. Thus, a
microscopic view of flow over cells was analyzed.

Figure 2 depicts the microscopic view of flow over cells partially confluent to varying
degrees and 100% confluent. Note the velocity field contour lines in addition to the colored
surfaces. Figures 2A and 2B depict unidirectional fluid flow of cells that are 50% confluent and
100% confluent, respectively. In both cases, a cell was located at the entrance to the flow region.
In doing so, this initial bump in the flow significantly altered the flow patterns such that flow
was at or near zero along the surfaces of following cells. Thus, it could be argued that the shear
stresses along the surfaces of these cells would be significantly lower.

Figure 2C depicts the flow along the cells when a cell height is relatively high (10 pm)
and cells are highly confluent. Note that the flow is nonzero along the upper region of the cells.
but the space between cells exhibited flow rates at or near zero. Thus, this unidirectional flow
simulation suggests that the shear stresses between cells in this condition (high cell height and
high confluence) are also at or near zero. Therefore, the shear stresses along the arc-length of
such cells are non-uniform.

Figure 2D displays the flow pattern beyond the entrance region when the cell height is
low (2.5 pm) and 50% confluent. In this case, the lack of flow along the cell surface observed in
Figures 2A and 2B becomes minimal. Furthermore, some flow occurs over a greater surface area

of the cells, and the shear stresses become more uniform along the cell arc-length when
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compared with those in Figure 2C. Therefore, these data suggest that cells with a lower
confluence and with a well spread cell morphology will undergo more uniform shear stresses

under fluid flow than cells that are more confluent and have a less well-spread morphology.

Finite Element Analysis of Fluid Flow: Cell Height Effects

As we briefly introduced in the previous section, cell height also affects the flow pattern
inside the fluid flow chamber. It has been reported that various biomaterials characteristics affect
cell spreading behavior and thus alter cell shape parameters including cell height, area, Feret’s
diameter, etc. Material surface chemistry and surface energy dependent hydrophobicity may be
one important mediator of the cell spreading (14).

First, we consider the extreme case that cell spreading is very low and cell height is very
high (20 um) and such a cell is exposed to unidirectional flow (Figure 3). This reveals a few
important characteristics. First. a very high cell height leads to a lack of flow at the edge of the
cell on both sides of flow, shown as blue portions in Figure 3. This leads to a concentration of
higher shear stresses at the upper surface of the cell. This would predict that the shear stresses
cells experience would be non-uniform in nature. Oscillatory fluid flow would thus be relatively
more beneficial than unidirectional flow in distributing the shear stresses along the surface of
these cells.

Furthermore, eddies begin to form in the distal region of flow, just beyond the right side
of the cell in the flow field. This will lead to turbulence if velocity is increased, and such
turbulence could hypothetically fabricate negative effects on cell adhesion, distribution of shear
stresses, and conservation of energy. In other words, the assumptions necessary for

reproducibility in experimental protocols would break down if such turbulence were to occur. As
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a result, this extreme condition predicts that oscillatory fluid flow provides a more consistent and
beneficial experimental condition than protocols utilizing unidirectional constant or
unidirectional peristaltic fluid flow of media over cells with larger height.

Therefore we then simulated oscillatory fluid flow over cells with varying heights. The
purpose was to determine the general differences between relative shear stresses induced by
oscillating fluid flow on cells with varying potential to spread. We hypothesized that cells with
larger cell height would be exposed to greater shear stresses but concentrated near the center of
the cell. This hypothesis stemmed from the preliminary simulation shown in Figure 3. As shown
in Figure 4, when oscillatory fluid flow was utilized, the flow profiles were all disturbed showing
little difference among the various conditions except at the cell surfaces. However, as the cell
height was increased, the fluid flow profile was further disturbed.

We then quantified the von Mises stresses from these oscillatory fluid flow simulations at
various portions of the cells (Figure 5). When oscillatory fluid flow (I Hz) was applied, stresses
with sinusoidal patterns were observed from /= 0.0 s to 1 = 3.0 s for all cell portions (center, left,
right) and for all cell heights. If we measure stresses at the center of the cell (Figure 5, top), the
amplitude of this sinusoidal pattern varies more for cells with the larger cell heights, having the
greatest peak amplitude at ca. 120 dyn/cm’. On averaging these data (top bar graph) it was
observed that greater shear stresses would be concentrated at the cell center when the cell height
is the highest. In the case that the cell height is “high’, the average stress value was not that high
but the amplitude and maximum stress values were relatively greater than the cases of cell height
is “lowest” and “low’.

Figure 5, middle, depicts the same data but at the left portion of the cell under oscillating

fluid flow for 3.0 seconds. Unlike the cell center, the von Mises stresses at the leftmost point on
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each cell from 7= 0.0 s to 1 = 3.0 s was very similar in its sinusoidal pattern among cells with
varying height. In fact, it becomes very difficult to analyze these time-dependent data at this
location. Nevertheless, one can easily locate very high shear stresses for cells with smaller
heights. These can be clearly seen in the averaged stress data. One can observe that for cells with
larger heights lower shear stresses exist at the leftmost point of adhesion. Considering oscillatory
fluid flow was utilized. similar trends in data were displayed at the distal location in the flow
field (Figure 5, bottom). This further indicates the benefit of oscillatory fluid flow over
unidirectional flow where such consistency at both cell sides would not be exhibited as in Figure
3. Therefore, these data suggest the benefits of utilizing of oscillatory fluid flow and the use of
substrates that stimulate cell spreading in the distribution of more uniform shear stresses across

the surface of cells.

Finite Element Analysis of Fluid Flow: Cells on Nanotopographies

FEM with COMSOL Multiphysics was employed to analyze oscillatory fluid flow over
cells cultured on nanotopographies (polystyrene/polybromostyrene, PS/PBrS 40/60 w/w demixed
films) and flat controls (plasma-cleaned glass, flat polystyrene). The nanotopographies used for
simulation in this study were 11 nm and 38 nm high nanoislands. Though the nanoscale substrata
were not explicitly simulated, a more indirect approach was taken for prediction of apparent
shear stress. According to past experimental data (15), it was assumed that cells cultured on these
surfaces have the approximate elastic moduli values as noted in the Materials and Methods
section. The purpose of these simulations was to analyze the differences in apparent shear
stresses under the same flow conditions. In order to do so, all cells were simulated at the same

smaller cell height (2.5 um) and by using oscillatory fluid flow conditions. As shown previously.
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a smaller cell height and oscillatory fluid flow exhibit the greatest level of shear stress
distribution (Figures 4. 5).

Although it would be predicted that these assumptions will hold true, it is still helptul to
verity these assumptions by initially analyzing the velocity fields and von Mises stress gradients
at various time points and on the various substrata. In Figure 6, it appears there are no significant
differences in the velocity field as demonstrated by the grayscale streamlines and the red arrows.
The middle column, at 1 = 2.3 seconds, depicts the peak velocity in the sinusoidal fluid flow
simulation. This time point was chosen due to the fact that oscillatory pressure becomes
maximum at t = 2.3 seconds. Specifically, the cosine function is nearest | at this time with a
frequency of 2m rad/sec. Again, even at the peak flow, there is no significant difference in
velocity field and von Mises stress distribution among the various substrates. This allows for a
consistent examination of the apparent shear stresses along the cell surface.

In order to analyze the average shear stresses along the cell surface, the von Mises stress
was quantified for each element along the arc length of the cell surface with the cellular elastic
moduli values assumed. Each of these elements was then averaged with the others to find this
apparent shear stress at the cell surface. These average shear stresses at 7 = 0.5, 2.3, and 3.0 s are
shown in Figure 7. These correspond to velocities of 2.07 cm/s. 8.81 cm/s, and 2.52 cm/s.
respectively. Peak pressure gradients of corresponded with greater velocity fields.

At 1= 0.5 s, there were significant differences in apparent shear stresses that the cell will
experience on various substrate surfaces. Cells cultured on 38 nm nanoislands displayed
significantly greater shear stresses than both the cells cultured on plasma-cleaned glass and on
flat polystyrene. Furthermore, cells cultured on 11 nm nanoislands were also significantly greater

in apparent shear stresses than those cultured on flat polystyrene. Taken together. at t = 0.5 s the
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apparent shear stresses experienced by cells under oscillatory fluid flow were significantly
greater when the cells were on nanoscale topographies relative to cell on flat surfaces. At 1= 2.3
s, cells cultured on 38 nm nanoislands were once again exposed to significantly greater shear
stress than those cultured on plasma-cleaned glass and flat polystyrene, while there was no
significance for cells cultured on 11 nm nanoislands. These data suggest that the significant
increase in apparent shear stresses is upheld under peak flow conditions. At + = 3.0 s, the
significance in data was similar to the 1 = 0.5 s time point.

It is interesting that cells cultured on 11 and 38 nm nanoisland topographies exhibited
significantly greater apparent shear stresses under the same oscillatory flow conditions than their
flat counterparts. This increase in apparent shear stress could thus be correlated to other findings
of increased mechanosensitivity of cells cultured on these nanoscale substrata when compared
with flat controls (24, 26).

If various substrata were utilized, but the elastic modulus was not affected by such
substrata, differences in flow profiles would be negligible. As a result, it would be predicted that
holding the modulus constant while altering nanoscale topography would not significantly affect

the apparent shear stresses experienced by cells.

DISCUSSION

FEM simulations were utilized in this study in order to analyze fluid flow patterns inside
a cell cultured flow chamber. Firstly, we examined the variability of fluid flow patterns among
various levels of cell confluence. At the macroscopic level, no significant differences were noted.

Thus, cell confluence was concluded to have no major effect on the flow profiles in bioreactors.

16
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However, microscopic analyses demonstrated that little to no flow would occur between highly
confluent cells. When cell confluence was decreased, fluid flow could more easily occur between
cells. Furthermore, cells in the entrance region of flow in the bioreactor would alter the patterns
of flow over cells downstream. It would thus be assumed that lower levels of confluence, 50%
confluent or less, would be optimal in the design of bioreactors utilizing such fluid flow. This
lower confluence allows for a better distribution of fluid flow across cell surfaces and thus a
better distribution of wall shear stresses. However, we suspect that the lower confluence may be
a trade-off considering potential stimulatory effects from cell-to-cell communication. Thus, there
may be an optimal cell confluency level that allows both uniform, positive fluid flow effects and
cell-to-cell communication eftects.

As regards cell height effects, FEM demonstrated a lack of flow in the distal region of
cells when the cell height is greater. Furthermore, these data suggest that oscillating fluid flow
used in some bioreactor systems (8, 16, 17) would be more beneficial than constant or peristaltic
unidirectional fluid flow found in similar bioreactors due to a more uniform distribution of shear
stresses along cell surfaces (9, 18-22). In analyses using oscillating fluid flow conditions, cells
with larger heights lead to more concentrated shear stresses near the center of the cell. With
decreasing cell height (relevant to increased cell spreading), the shear stresses at the center of the

cells decreased on average and the shear stresses at the left and right of the cell increased. These

- relative changes imply a more efficient distribution of shear stresses with decreasing cell height.

Though the method by which cells sense shear stress remains yet to be elucidated, it has been
assumed that stresses taken across the surface area of the cell as opposed to a concentration at
one location would prove to be more beneficial. Additionally, these data may explain why cells

with greater spreading may exhibit a greater response under fluid flow in the laboratory. Taken
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together, these data suggest that bioreactors should utilize oscillating fluid flow in combination
with substrates that stimulate cell spreading for a better distribution of wall shear stresses in the
cell culture system.

Our previous studies demonstrated that cells cultured on various nanoscale topographies
will exhibit different biophysical properties, including varying elastic moduli, cell adhesion. and
morphology (15, 23. 24). Continuing with finite element analyses utilizing oscillating fluid flow.
data from these studies was implemented to determine any potential differences in the apparent
shear stresses of cells cultured on these various substrates. The approach taken did not explicitly
model the substrates: instead, an indirect approach coupled previous elastic modulus data from in
vitro studies with the current in silico study. This allowed for a comparison of cells on various
substrates while limiting the need for computational resources. It was demonstrated in this study
that cells cultured on Il and 38 nm nanoislands exhibited a significantly greater apparent shear
stress than cells on flat surfaces. This was due to an increased elastic modulus present in the cells
cultured on these surfaces. Since this modulus is the relationship of stress versus strain, an
increased modulus will result in decreased strain under the same conditions. In other words. a
stiffer cell under the same flow conditions as a less stiff cell will be unable to deform as easily in
response to the pressures imposed by flow. For this reason, the apparent shear stress imposed by
the flow on the surface of the cell will be greater. Increased cell stiffness is thus correlated with
an increased apparent shear stress, and these data support the hypothesis that cells with a greater
elastic modulus will exhibit increased apparent shear stresses under oscillating fluid flow
conditions.

The success of finite element analyses was witnessed in the examination of factors not

casily determined empirically through the demonstration that cells cultured on nanotopographic

18
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substrata exhibited increased apparent shear stresses relative to cells on flat surfaces.
Furthermore, FEM was used in such a way that an experiment could be set up to empirically
validate these results through parallel analyses. Thus, these methods provide an excellent segue
into exploring future routes of study.

A key element of the data presented was the demonstrated benefit of oscillating fluid
flow as a superior method to its unidirectional counterpart. Flow is more evenly distributed in the
bioreactor system over time, leading to a better distribution of shear stresses across cell
membranes. This distribution allows such systems to be more predictive due to a better estimate
of the flow rates and shear stresses at the walls of a bioreactor. Thus, it can be concluded that
oscillating fluid flow provides greater benefits than constant or peristaltic unidirectional fluid
flow systems.

Our data demonstrate that FEM can be successfully utilized to analyze flow patterns over
cells culture under various conditions. FEM provides an excellent tool in the prediction of
experimental protocols and the design of bioreactor systems. Though the bioreactor system
presented here was simulated as a two-dimensional substrate simplified to a single plane, FEM
can easily be expanded to analyze more complex geometries. When discussing the difference in
perfusion of three-dimensional bioreactor systems, this same method could provide insight not

easily acquired through empirical methods.
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Cell Type Flow Type Substrate Figures Supplement
Semi-Circular “Bump”  Unidirectional Flat Polystyrene 1,2,3 S.B
1.5 um High hFOB Oscillatory Flat Polystyrene 4,5 S.A

3 um High hFOB
5 um High hFOB
7 um High hFOB

3 um High hFOB Oscillatory *Plasma-Cleaned Glass 6.7 S.C
*Flat Polystyrene
*11 nm Nanoislands
*38 nm Nanoislands

Table 1. The varying types of simulations have been summarized here. Preliminary studies used
a semi-circular “bump” in unidirectional flow to analyze the effects of confluence on flow
patterns. Additionally, these preliminary data were used to examine flow distal to the cell under
unidirectional conditions. Varying cell heights of human fetal osteoblastic cells (hFOB) were
compared under oscillatory fluid flow conditions to examine the effects of cell height on the
relative von Mises stresses imposed upon cells by such flow. Finally, 3 um high hFOBs were
examined under the same oscillatory flow conditions and compared on various substrata. The
purpose was to compare the relative von Mises stresses imposed by these flow conditions on
cells with varying elastic moduli. All of these analyses and model reports can be found in the
figures and supplements noted in the table.

*These substrata were simulated by varying the relative Young’s moduli of cells cultured on the
various surfaces. Such values were taken from previous experimental data by Hansen et al. (32).
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Figure 1. FEM Analysis of cell confluence: macroscopic view. Incompressible Navier-Stokes with a Newtonian
fluid was assumed.
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Figure 2. FEM of cell confluence: microscopic view. (A
(B) 100% confluence with cell at entrance to flow field, (C) 100% confluence with a larger cell height, and
(D) 50% confluence without cell at entrance.
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von Mises Stress
(dyn/cm2)

Oscillatory Flow

t=3.0s 100 500

Figure 4. Shear stresses along the surfaces of cells with varying cell height. Oscillatory fluid flow of media
was utilized and these data depict the simulation at t = 3.0 seconds. Red arrows depict the velocity field and
the grayscale gradient depicts the von Mises stress distribution in the various simulations.
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Figure 5. Shear stresses assessed at the cell center (top), cell left (middle), and cell right (bottom) portion

over 3.0 seconds, along with the corresponding averages for each variance.
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t=0.5sec

Plasma-Cleaned Glass
a)
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11 nm Nanoislands
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38 nm Nanoislands
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Oscillatory Flow
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Velocity Field
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0.01

von Mises Stress (Pa)
7.00

Figure 6. FEM simulation of oscillatory fluid flow on various substrata att = 0.5s,t = 2.3's, and t =3.0 s.
Red arrows depict the velocity field, and the grayscale gradient depicts the von Mises stress distribution in

the various simulations.
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(¢}
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Oscillatory Flow
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Velocity Field
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von Mises Stress (Pa)
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Figure 1. FEM Analysis of cell confluence: macroscopic view. Incompressible Navier-Stokes
with a Newtonian fluid was assumed.

Figure 2. FEM of cell confluence: microscopic view. (A) 50% confluence with cell at entrance to
flow ficld, (B) 100% confluence with cell at entrance to flow field, (C) 100% confluence with a
larger cell height, and (D) 50% confluence without cell at entrance.

Figure 3. Unidirectional fluid flow pattern over a cell with a large cell height.

Figure 4. Shear stresses along the surfaces of cells with varying cell height. Oscillatory fluid
flow of media was utilized and these data depict the simulation at t = 3.0 seconds. Red arrows
depict the velocity field and the grayscale gradient depicts the von Mises stress distribution in the
various simulations.

Figure 5. Shear stresses assessed at the cell center (top), cell left (middle), and cell right (bottom)
portion over 3.0 seconds, along with the corresponding averages for each variance.

Figure 6. FEM simulation of oscillatory fluid flow on various substrata att=0.5s,t=2.3 s, and
t=3.0 s. Red arrows depict the velocity ficld, and the grayscale gradient depicts the von Mises
stress distribution in the various simulations.

Figure 7. Average shear stresses in the FEM of oscillatory fluid flow over various substrata at t
=0.5s,t=23s,and t=3.0s. (*: p<0.05, **: p<0.01, ***: p<0.001).
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Cell Type Flow Type Substrate Figures Supplement
Semi-Circular “Bump”  Unidirectional Flat Polystyrene 1,2,3 S.B

1.5 pm High hFOB Oscillatory Flat Polystyrene 4,5 S.A
3 um High hFOB
5 pm High hFOB
7 pm High hFOB

3 um High hFOB Oscillatory *Plasma-Cleaned Glass 6,7 S.C
*Flat Polystyrene
*11 nm Nanoislands
*38 nm Nanoislands

Table 1. The varying types of simulations have been summarized here. Preliminary studies used
a semi-circular “bump” in unidirectional flow to analyze the effects of confluence on flow
patterns. Additionally, these preliminary data were used to examine flow distal to the cell under
unidirectional conditions. Varying cell heights of human fetal osteoblastic cells (hFOB) were
compared under oscillatory fluid flow conditions to examine the effects of cell height on the
relative von Mises stresses imposed upon cells by such flow. Finally, 3 um high hFOBs were
examined under the same oscillatory flow conditions and compared on various substrata. The
purpose was to compare the relative von Mises stresses imposed by these flow conditions on
cells with varying elastic moduli. All of these analyses and model reports can be found in the
figures and supplements noted in the table.

*These substrata were simulated by varying the relative Young’s moduli of cells cultured on the
various surfaces. Such values were taken from previous experimental data by Hansen et al. (32).
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Supplemental Information — COMSOL Model Reports

Contents:

S.A - Cell Height Study - p.1
S.B — Cell Confluence Study — p.8
S.C - Young’s Modulus Study - p.15

Supplement A — Cell Height Study (S.A)

1. Table of Contents

Title - COMSOL Model Report
Table of Contents

Model Properties

Constants

Geometry

Geoml

Solver Settings

Postprocessing

2. Model Properties

Property Value

Model name

Author

Company

Department

Reference

URL

Saved date Jun 19, 2008 2:00:43 PM
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Creation date Jun 12, 2008 10:36:24 AM

COMSOL version| COMSOL 3.4.0.248

File name: G\COMSOL\I.mph
Application modes and modules used in this model:
e Geoml (2D)

o Incompressible Navier-Stokes
o Plane Stress (Structural Mechanics Module)

3. Constants

Name| Expression| Value| Description
w 2*pi[rad/s] frequency
Patm |Q[Pa]

k 40[Pa/m]

4. Geometry
4.1. Geoml

o
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5.2. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

5.2.1. Application Mode Properties

Property Value

Default element type| Lagrange - P, P,
Analysis type Transient
Corner smoothing | Off

Frame Frame (ref)
Weak constraints Off

Constraint type Ideal

5.2.2. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'n'), shlag(2,'v'), shlag(1,'p')

Interior boundaries not active

5.2.3. Boundary Settings

Boundary I 2,4,6-7(3
Type Inlet Wall Wall
intype p uv uv
walltype noslip noslip |slip
Pressure (p0)|Pa|0.5%k*cos(w*t)+Patm|0 0
Boundary 5

Type Outlet

intype uv

walltype noslip

Pressure (p0)| Pa|-0.5%k*cos(w*t)+Patm

5.2.4. Subdomain Settings

Subdomain 1
Integration order (gporder)| (4 4 2
Constraint order (cporder) | {221
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5.3. Application Mode: Plane Stress (smps)

Application mode type: Plane Stress (Structural Mechanics Module)

Application mode name: smps

5.3.1. Scalar Variables

Name Variable

Value| Unit| Description

t_old_inift_old_ini_smps

-1 S Initial condition previous time step (contact with dynamic
friction)

5.3.2. Application Mode Properties

Property Value

Default element type Lagrange - Quadratic
Analysis type Static

Large deformation On

Specify eigenvalues using| Eigenfrequency
Create frame On

Deform frame Frame (deform)
Frame Frame (ref)

Weak constraints Off

Constraint type Ideal

5.3.3. Variables

Dependent variables: u2, v2, p2

Shape functions: shlag(2,'u2'), shlag(2,'v2")

Interior boundaries not active

5.3.4. Boundary Settings

Boundary 2-4 6-7 1,5
Follower pressure (P)|Pa|0 p 0
loadcond distr_force|follower_press|distr_force
constrcond free free fixed
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6. Solver Settings

Solve using a script: off

Analysis type Transient

Auto select solver|On

Solver Time dependent
Solution form Automatic
Symmetric Oft

Adaption Off

6.1. Direct (PARDISO)

Solver type: Linear system solver

Parameter

Value

Preordering algorithm |Nested dissection

Row preordering On

Pivoting perturbation |1.0E-8

Relative tolerance 1.0E-6

Factor in error estimate|400.0

Check tolerances On

6.2. Time Stepping

Parameter Value
Times 0:0.1:3
Relative tolerance 0.01

Absolute tolerance 0.0010

Times to store in output

Specified times

Time steps taken by solver Free
Manual tuning of step size Off
Initial time step 1E-6
Maximum time step 1.0
Maximum BDF order 5
Singular mass matrix Maybe

Consistent initialization of DAE systems

Backward Euler

Error estimation strategy

Exclude algebraic

Allow complex numbers

Off
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7. Postprocessing
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Supplement B — Cell Confluence Study (S.B)

1. Table of Contents

o Title - COMSOL Model Report

Table of Contents

» Model Properties
o Geometry

e Geoml

o Solver Settings

o Postprocessing

2. Model Properties

Property

Value

Model name

Author

Company

Department

Reference

URL

Saved date

Jun 6, 2008 2:06:39 PM

Creation date

Jun 6, 2008 1:31:37 PM

COMSOL version

COMSOL 3.4.0.248

File name: G:\COMSOL\10%-Confluency.mph

Application modes and modules used in this model:

e Geoml (2D)
o Plane Strain (Structural Mechanics Module)
o Incompressible Navier-Stokes
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4. Geoml1

4.1. Mesh

4.1.1. Mesh Statistics

Number of degrees of freedom

28861

Number of mesh points 1757
Number of elements 3263
Triangular 3263
Quadrilateral 0
Number of boundary elements | 249
Number of vertex elements |28
Minimum element quality 0.691
Element area ratio 0
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4.2. Application Mode: Plane Strain (smpn)
Application mode type: Plane Strain (Structural Mechanics Module)
Application mode name: smpn

4.2.1. Scalar Variables

Name |Variable Value| Unit| Description
t_old_ini|t_old_ini_smpn|-1 S Initial condition previous time step (contact with dynamic
friction)

4.2.2. Application Mode Properties

Property Value

Default element type Lagrange - Quadratic
Analysis type Static

Large deformation On

Specify eigenvalues using|Eigenfrequency
Create frame Off

Deform frame Frame (ref)
Frame Frame (ref)
Weak constraints Off

Constraint type Ideal

4.2.3. Variables

Dependent variables: u2, v2, p2
Shape functions: shlag(2,'u2"), shlag(2,'v2")
Interior boundaries not active

4.2.4. Subdomain Settings

Subdomain 1

name Solid domain
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4.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

4.3.1. Application Mode Properties

Property Value

Default element type|Lagrange - P, P,
Analysis type Stationary
Corner smoothing | Off

Frame Frame (ref)
Weak constraints Off

Constraint type Ideal

4.3.2. Variables

Dependent variables: u, v, p, nxw, nyw
Shape functions: shlag(2,'u"), shlag(2,'v"), shlag(1,'p')
Interior boundaries not active

4.3.3. Boundary Settings

Boundary 1 2-11, 13-28

12

Type Inlet Wall

Open boundary

Normal inflow velocity (UOin)| m/s| 0.38095238]| 1

1

4.3.4. Subdomain Settings

Subdomain 1

Integration order (gporder)| (4 4 2

Constraint order (cporder) | 221
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5. Solver Settings

Solve using a script: off

Analysis type Static
Auto select solver| On

Solver Stationary
Solution form Automatic
Symmetric auto
Adaption Off

5.1. Direct (PARDISO)

Solver type: Linear system solver

Parameter

Value

Preordering algorithm

Nested dissection

Row preordering

On

Pivoting perturbation |1.0E-8

Relative tolerance

1.0E-6

Factor in error estimate|400.0

Check tolerances

On

5.2. Stationary

Parameter Value
Linearity Automatic
Relative tolerance 1.0E-6
Maximum number of iterations 25

Manual tuning of damping parameters

Off

Highly nonlinear problem On
Initial damping factor 1.0
Minimum damping factor 1.0E-4
Restriction for step size update 10.0

5.3. Advanced

Parameter

Value

Constraint handling method

Elimination

Page 52 of 60
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Null-space function Automatic
Assembly block size 1000
Use Hermitian transpose of constraint matrix and in symmetry detection| Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling None
Manual scaling

Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

6. Postprocessing
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Supplement C — Young’s Modulus Study (S.C)

1. Table of Contents

o Title - COMSOL Model Report
o Table of Contents

e Model Properties

o Constants

o Geometry

e Geoml

e Solver Settings

o Postprocessing

2. Model Properties

Property Value

Model name

Author

Company

Department

Reference

URL

Saved date Jul 9, 2008 1:32:46 PM

Creation date Jun 12, 2008 10:36:24 AM

COMSOL version| COMSOL 3.4.0.248

File name: G\COMSOLA | nm.mph
Application modes and modules used in this model:
e Geoml (2D)

o Incompressible Navier-Stokes
o Plane Stress (Structural Mechanics Module)
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5. Geoml

5.1. Mesh

5.1.1. Mesh Statistics

Number of degrees of freedom| 2451

Number of mesh points 155
Number of elements 265
Triangular 265
Quadrilateral 0

Number of boundary elements | 43

Number of vertex elements 7

Minimum element quality 0.741

Element area ratio 0.077

~1 wl o ] ]
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5.2. Application Mode: Incompressible Navier-Stokes (ns)
Application mode type: Incompressible Navier-Stokes
Application mode name: ns

5.2.1. Application Mode Properties

?1ed version may differ from this proof.

Part C: Methods

g

Tissue Engineerin

2Z Property Value

g Default element type| Lagrange - P, P,

?gé Analysis type Transient

éé Corner smoothing | Off

§' g Frame Frame (ref)

28 Weak constraints Off

E § Constraint type Ideal

;g 5.2.2. Variables

Te

;?-, Dependent variables: u, v, p, nxw, nyw

=2

%-;?; Shape functions: shlag(2,'u"), shlag(2,'v"), shlag(1,'p")
vz

; g Interior boundaries not active

5%

@’s 5.2.3. Boundary Settings

ve

2% Boundary I 2.4.67]3
E’:—: Type Inlet Wall | Wall
';g'z intype p uv uv
23 walltype noslip noslip |slip
'§ 2 Pressure (p0)|Pa| 0.5%k*cos(w*t)+Patm|0 0
2 Boundary 5

E Type Outlet

m intype uv

;cé walltype noslip

= Pressure (p0)| Pa|-0.5*k*cos(w*t)+Patm

5.2.4. Subdomain Settings

Subdomain |
Integration order (gporder)| |4 4 2
Constraint order (cporder) | (221

This article has been peer-reviewed and accepted for publi
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5.3. Application Mode: Plane Stress (smps)

Application mode type: Plane Stress (Structural Mechanics Module)

Application mode name: smps

5.3.1. Scalar Variables

Name

Variable

Value| Unit

Description

t_old_ini

t_old_ini_smps

-1 S

Initial condition previous time step (contact with dynamic
friction)

5.3.2. Application Mode Properties

Property

Value

Default element type

Lagrange -

Quadratic

Analysis type

Static

Large deformation

On

Specify eigenvalues using

Eigenfrequency

Create frame

On

Deform frame

Frame (deform)

Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

5.3.3. Variables

Dependent variables: u2, v2, p2

Shape functions: shlag(2,'u2"), shlag(2,'v2")

Interior boundaries not active

5.3.4. Boundary Settings

Boundary 2-4 6-7 1,5
Follower pressure (P)|Pa|0 p 0
loadcond distr_force|follower_press|distr_force
constrcond free free fixed

5.3.5. Subdomain Settings

Page 58 of 60
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Subdomain |

Young's modulus (E)|Pa| 9000

6. Solver Settings

Solve using a script: off

Analysis type Transient

Auto select solver|On

Solver Time dependent
Solution form Automatic
Symmetric Oofft

Adaption Off

6.1. Direct (PARDISO)

Solver type: Linear system solver

Parameter Value

Preordering algorithm |Nested dissection

Row preordering On

Pivoting perturbation |1.0E-8

Relative tolerance 1.0E-6

Factor in error estimate|400.0

Check tolerances On

6.2. Time Stepping

Parameter Value
Times 0:0.1:3
Relative tolerance 0.01

Absolute tolerance 0.0010

Times to store in output

Specified times

Time steps taken by solver Free
Manual tuning of step size Off
Initial time step 1E-6
Maximum time step 1.0
Maximum BDF order 5
Singular mass matrix Maybe

Consistent initialization of DAE systems

Backward Euler
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6.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Assembly block size 1000

Stop if error due to undefined operation| On

Store solution on file Off

Type of scaling Automatic
Row equilibration On

Load constant On
Constraint constant On

Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

7. Postprocessing
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