M3D5: Battery assembly and testing

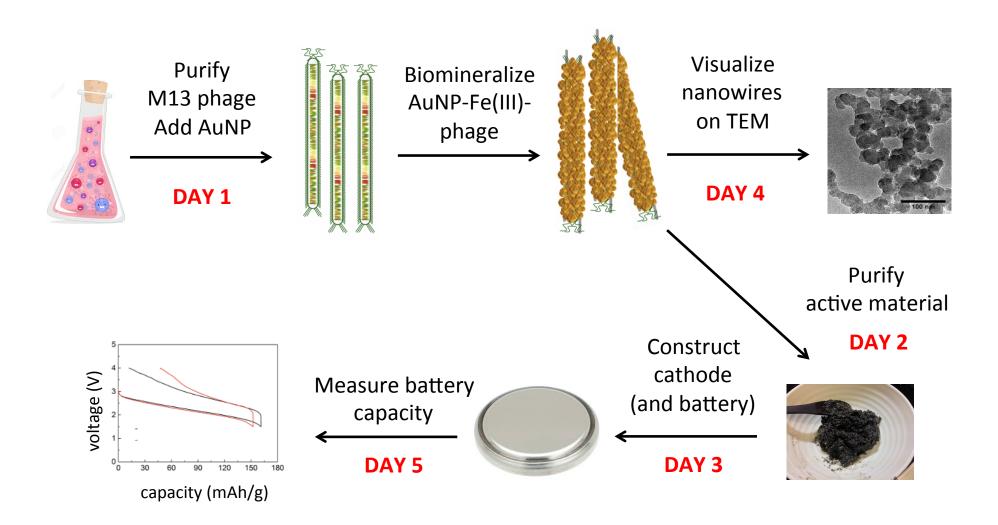
5/05/2016

- 1. Last Quiz
- 2. Prelab Discussion
- 3. Half of class goes to Belcher lab
- 4. Half of class works on report or research proposal

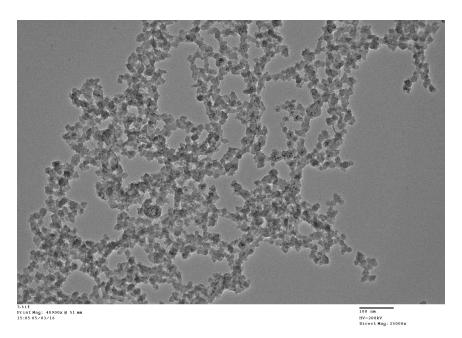
Notebook entry M3D2 will be graded

The final countdown...

- Reminder: visit Comm. Lab for 5pts M3 HW credit
- M3 mini-report (5%)
 - 2 pages (3 at MOST) without figures
 - OH TODAY 6-10pm 16-220 (lecture room) with pizza
 - No abstract, no methods section, combined results and discussion
 - Figures: TEM, Elemental mapping, battery capacity, compare class data


M3 research proposal (20%)

- Office hours on Sunday (5/8) 11am 5pm in 56-302
- slides due Tuesday, May 10th at 1pm
- bring 1 print-out of your slides to 16-336

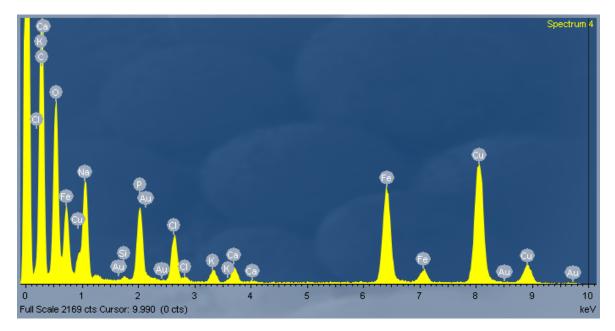

M3 Blog and extras

- Mod3 blog due May 11th 5pm
- all other blogs due May 14th 11am

Module 3: biomaterials engineering How does gold size/quantity affect battery capacity?

TEM micrographs

A-1; #
PF:RT Mag: 164000X # 51 mn
15:06-05/03/16


15:06-05/03/16

16:000X # 51 mn
16:06-05/03/16

-biomineralization-distribution of NP-NP associated with virus

-uniformity of iron phosphate/phage, NP-NP size-lattice structures in gold an iron phosphate

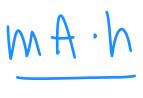
TEM EDX

	*** * * ***	
Element	Weight%	Atomic%
CK	36.75	58.91
OK	16.56	19.94
Na K	6.81	5.71
Si K	0.25	0.17
PK	5.25	3.26
CLK	3.42	1.86
K K	0.90	0.44
Ca K	1.07	0.52
Fe K	10.73	3.70
Cu K	18.10	5.49
Au L	0.16	0.02
	I	

-X ray detector made of silicon -Iron to phosphate ratios

Battery Capacity Measurements

Galvanostat: Instrument used to measure battery capacity; keep current constant



Theoretical capacity is 178 mA*h/g value based on the reduced state of the cathode material - LiFe(II) PO_4

Practically determine capacity by calculating the difference between the maximum differences in the discharge and charge cycles.

Battery Capacity Calculations

- 2		J	P	Q		
1	Exported CellTest Data					
1 2 3 4 5	Data file version: 12					
3	Experiment start time : 4/29/2016 4:28:09 PM					
4						
5	Voltage (V)	Current (A)	Charge (Ah)			
7	2.95300293	-4E-09	-1E-12			
	2.95288086	-5E-09	-3E-12			
8	2.95288086	-5E-09	-4E-12			
9	2.95288086	-5E-09	-5E-12			
10	2.95288086	-5E-09	-7E-12			
11	2.95300293	-4E-09	-8E-12			
12	2.95300293	-4E-09	-9E-12			
13	2.95300293	-4E-09	-1E-11			
14	2.95300293	-4E-09	-1.1E-11			
15	2.95300293	-4E-09	-1.2E-11			
16	2.95300293	-4E-09	-1.4E-11			
17	2.95300293	-4E-09	-1.5E-11			
18	2.95300293	-4E-09	-1.6E-11			
19	2.95300293	-4E-09	-1.7E-11			
20	2.95300293	-4E-09	-1.8E-11			
21	2.95300293	-4E-09	-1.9E-11			
22	2.95300293	-4E-09	-2E-11			

- Calculate the capacity by dividing the Charge (Ah) by the weight of the electrode (check weight with me). Ensure the units are in (Ah/g).
 Repeat the capacity calculation for the
- Repeat the capacity calculation for the entire column for both the discharge and charge sections. You can simply drag the formula down the column.
- 3) Calculate capacity by **subtracting** the difference in highest and lowest capacities from the charge cycle, from the difference in the highest and lowest capacities from the discharge cycle. *In other words, what is the greatest difference between the maximum differences in the discharge and*

Today in lab

- Belcher lab (5th floor Koch)
 - 1:45pm: red/orange/purple/pink
 - 2:45pm: green /yellow/blue
- Use your time wisely:
 - Finish your M3 mini-report early!