Module 2 overview

lecture lab

1. Introduction to the module
2. Rational protein design
3. Fluorescence and sensors
4. Protein expression
lab
5. Start-up protein eng.
6. Site-directed mutagenesis
7. DNA amplification
8. Prepare expression system

SPRING BREAK

5. Review \& gene analysis
6. Purification and protein analysis
7. Binding \& affinity measurements
8. High throughput engineering
9. Gene analysis \& induction
10. Characterize expression
11. Assay protein behavior
12. Data analysis

Lecture 5: Review \& gene analysis

I. Review of the project
A. Project aims and rationale
B. Methods, work completed so far
II. Analysis of mutant genes
A. Restriction digests
B. DNA sequencing

Module 2 assignment

Protein engineering research article

1. Abstract
2. Introduction
3. Materials and Methods
4. Results
5. Discussion
6. References
7. Figures

Module 2 assignment

Protein engineering research article

1. Abstract
2. Introduction

Why are calcium sensors important? (bioengineering)
Why are calcium-binding proteins important? (science)
What hypothesis/idea are you examining?
What is pericam and why focus on it?
Why did you choose your specific mutations?
3. Materials and Methods
4. Results
5. Discussion
6. References
7. Figures

Module 2 assignment

Protein engineering research article

1. Abstract
2. Introduction

Why are calcium sensors important? (bioengineering)
Why are calcium-binding proteins important? (science)
What hypothesis/idea are you examining?
What is pericam and why focus on it?
Why did you choose your specific mutations?
3. Materials and Methods
4. Results
5. Discussion
6. References
7. Figures

Restriction enzymes digest specific DNA sequences

www.wikipedia.com
you designed mutations that can be assessed by restriction mapping:
. . .TACATCAGCGCTGCTCAG
. . . TACATCCTCGCTGCGCAG . . .
. . . ATGTAGTCGCGACGAGTC. . . $Y \quad I \quad S \quad A \quad A \quad Q$
. . . ATGTAGGAGCGACGCGTC. . . $Y \quad I \quad L \quad A \quad A \quad Q$

How do restriction endonucleases work?

Viadiu \& Aggarwal $(1998,2000)$

Genetic polymorphisms can be associated with different distributions of restriction sites-restriction fragment length polymorphisms (RFLPs) used for genotyping

www.wikipedia.com
Suppose alleles A and B each occur in 50% of the population and segregated independently, what are the chances that a randomly chosen individual displays the AB phenotype?

How many biallelic polymorphisms would have to be considered for each genotype to have a $1: 1,000,000$ chance of occurring, assuming independence and equal prevalence of each allele?

Restriction digests in forensics: DNA fingerprinting

http://news.bbc.co.uk/

Jobling (2004) Nat. Rev. Genetics

How does sequencing work?

Perform PCR on template to be sequences; each PCR reaction is terminated by a nucleotide analog that can be incorporated, but not added to. Terminated PCR products must be labeled in some way.

nucleotides linked by phosphodiester dATP bonds

run products in four separate lanes on gel, expose X-ray film

"one pot" sequencing more common today:
template, fluorescently tagged

```
ddATP, ddTTP, ddCTP, ddGTP, etc.
```

chains termined by (all different colors)
 tagged A, T, C, G
$10 \quad 20$

