
Biomaterials and Cell-Biomaterial Interactions

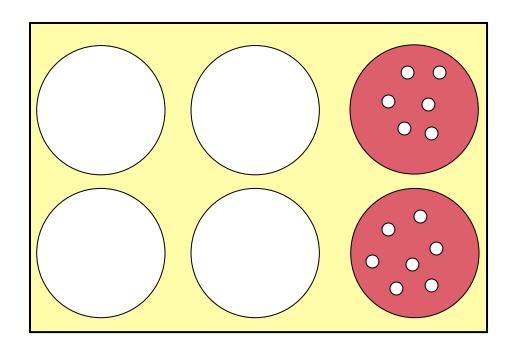
Module 3, Lecture 2

20.109 Spring 2013

Lecture 1 review

- What is tissue engineering?
- Why is tissue engineering?

- Why care about cartilage?
- What are we asking in Module 3?


Topics for Lecture 2

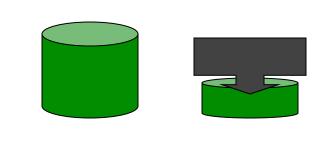
- Introduction to biomaterials
 - properties
 - examples
- Cartilage composition
 - collagen
 - proteoglycans
 - structure → function

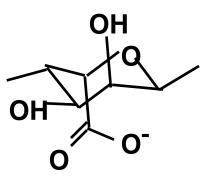
Module 3 learning goals

- Lab concepts/techniques
 - mammalian cell culture and phenotypic assays
- Short informal report
 - accountability to 20.109 community
- Discussions in lecture
 - engage with meta-scientific issues, ethics, etc.
- Research idea presentation
 - investigate literature independently
 - exercise scientific creativity
 - design experiments to address a specific question

Today in Lab: M3D2

Condition 1 of 2


0.5 mL beads, 6 mL media


0.5 mL beads, 6 mL media

- 1 condition per plate (2 plates total).
- 2 wells per plate (*split* 1 mL of beads). if contaminate 1 well on D3, still have 1 on D4.

Properties of biomaterials

- Physical/mechanical
 - strength
 - elasticity
 - architecture (e.g., pore size)
- Chemical
 - degradability
 - toxicity
 - water content
- Biological
 - motifs that cells recognize
 - release of soluble components
- Lifetime

The right material for the job

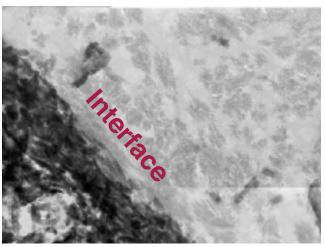
Metals

- Ti, Co, Mg alloys
- pros: mechanically robust
- applications: orthopedics, dentistry

Ceramics

- Al₂O₃, Ca-phosphates, sulfates
- pros: strength, bonding to bone
- applications: orthopedics, dentistry

Polymers


- diverse, tunable properties
- applications: soft tissues

General: B. Ratner, ed. *Biomaterials Science*, 1996.

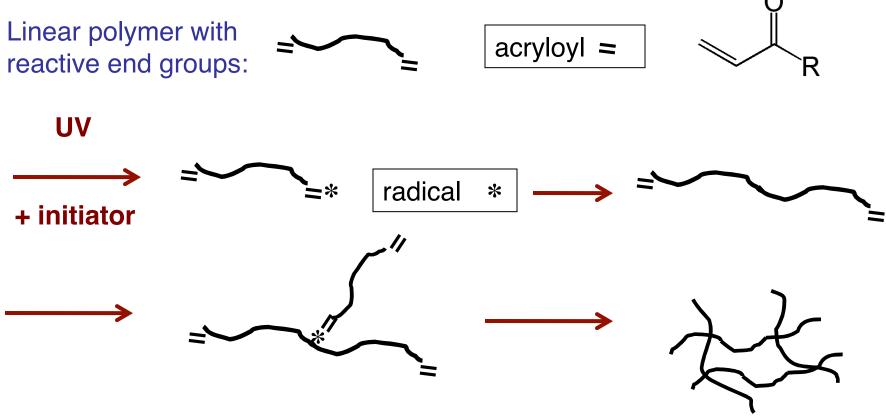
Image: Porter et al., Biomaterials 25:3303 (2004).

http://www.weisshospital.com/ joint-university/hip/metal.html

Si-HA

Bone

Polymers are diverse and tunable


- Linear polymers
 - repeated chemical unit
- Co-polymers
 - heterogeneous repeats
- As MW increases
 - entanglements
 - strength ♠
 - processability
- Chemical group(s) affects
 - mechanical properties
 - stability/degradability
 - hydrophilicity
 - reactivity/modification ease
 - gas permeability

Poly(ethylene glycol)

Poly(lactic-co-glycolic acid)

[public domain image]

Network polymer synthesis example

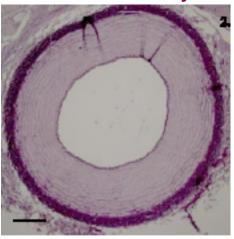
- Network structure
 - covalently cross-linked chains
 - water-swollen (if hydrophilic)

Network polymer

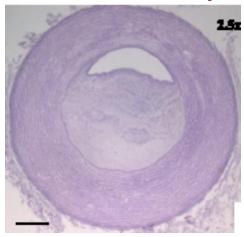
Properties of hydrogels

- Mimic soft tissues
 - water content
 - elasticity
 - diffusivity
- Synthesis at physiological conditions
 - temperature
 - pH
 - UV light: spatio-temporal control; safe; patterning potential
- Injectability
- Chemical modification

(Stachowiak & Irvine)

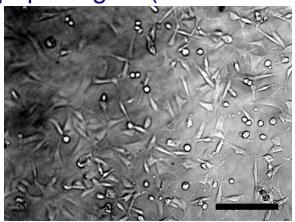

Review: Nguyen KT & West JL, Biomaterials 23:4307 (2002)

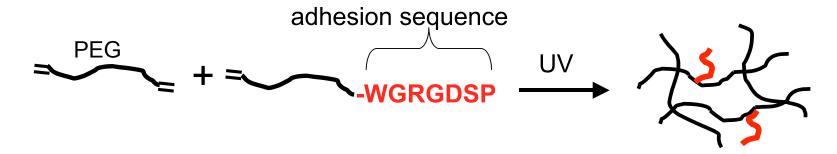
Materials must be biocompatible


- Avoid bio-incompatibility
 - chemical toxicity: cells, genomes
 - immunogenicity
 - protein/cell adhesion → clotting
 - bacterial adhesion
- Material properties
 - material and its degradation products non-toxic
 - sterility
 - resistance to protein adhesion

Data from: Zavan B, et al., *FASEB J* **22**:2853 (2008).

Normal artery


Occluded artery


Beyond bioinert: bioactive materials

- Attach proteins/peptides for
 - specific cell adhesion
 - degradability
- Release cytokines for
 - proliferation
 - differentiation
 - attraction

Fibroblasts on polymerpeptide gels (Stachowiak).

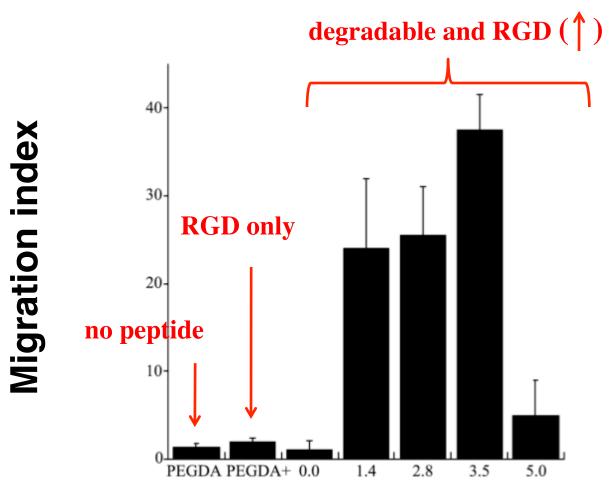
• e.g., West JL and Hubbell JA *Macromolecules* **32**:241 (1999)

Interlude: on reproducibility

Problem:

"In September, Bayer published a study describing how it had halted [a majority] of its early drug target projects because inhouse experiments failed to match claims made in the literature." http://online.wsj.com Dec 2nd, 2011

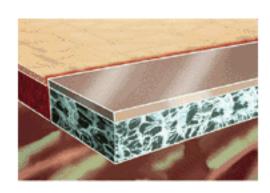
Solution?


"The initiative aims to help scientists validate their research findings by providing a mechanism for blind, independent replication by experts from Science Exchange's network of more than 1,000 providers at core facilities and contract research orgs." http://blogs.plos.org/everyone/2012/08/14/plos-one-launches-reproducibility-initiative/

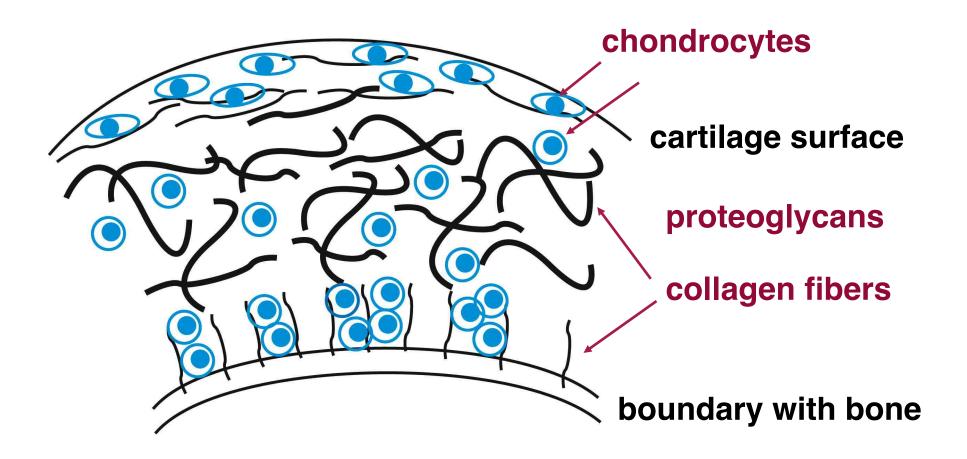
Or just more problems?

http://scholarlykitchen.sspnet.org/2012/08/16/the-reproducibility-initiative-solving-a-problem-or-just-another-attempt-to-draw-on-research-funds/

http://www.xconomy.com/seattle/2012/10/02/the-reproducibility-initiative-a-good-idea-in-theory-that-wont-work-in-practice/


TE constructs to study cell migration

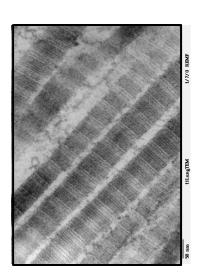
Gobin AS & West J, FASEB J 16:751 (2002)


Natural vs. synthetic polymers

- Natural pros/cons
 - built-in bioactivity
 - poor mechanical strength
 - immunogenicity (xenologous sources)
 - lot-to-lot variation, unpredictable

- Synthetic pros/cons
 - predicting biocompatibility is tough
 - mechanical and chemical properties readily altered
 - minimal lot-to-lot variation
- Synthetic advantages: tunable and reproducible

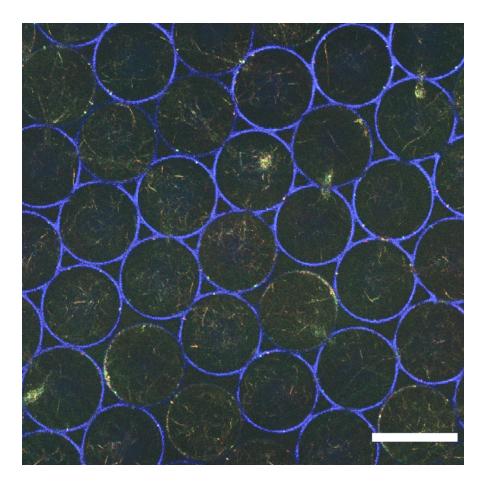
Revisiting cartilage structure



Water-swollen, heterogeneous, avascular and cell-poor tissue.

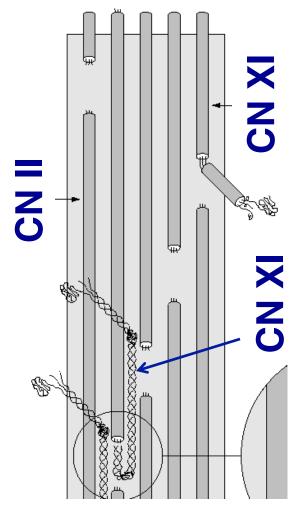
Structure of collagen(s)

- 1° structure:
 - Gly-X-Y repeats
 - proline, hydroxyproline
- 3° structure: triple helix
 - Gly: flexibility
 - Hyp: H-bonding
- 4° structure: fibrils
 - many but not all collagens
 - cross-links via lysine, hydroxylysine
 - periodic banding observable


HYP residues

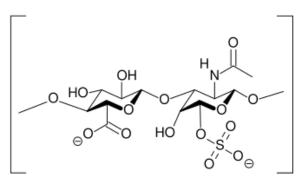
Molecular image made using *Protein Explorer* (PDB ID: 1bkv). Fibril image from public domain.

E. Vuorio & B. de Crombrugghe *Annu Rev Biochem* 59:837 (1990)


Macro structure of fibrillar collagen

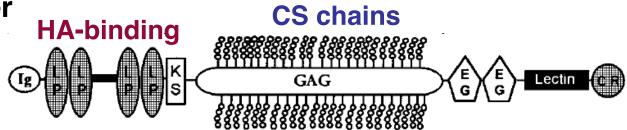
A. Stachowiak and D.J. Irvine, confocal reflection microscopy of collagen-filled synthetic scaffold.

Collagen composition in cartilage


- Collagen types vary in
 - location
 - glycoslyation
 - higher-order structure
 - homo- (II) or hetero- (I) trimers
- Cartilage collagens
 - Type II with IX and XI
 - exact roles of IX and XI unknown
 - inter-fibrillar cross-links
 - modulate fibril diameter
 - integration with rest of ECM
 - others(III, VI, X, XII, XIV)
- Little collagen turnover in adult cartilage
- D.J. Prockop Annu Rev Biochemritis Res 64:403 (1995)
- D. Eyre *Arthritis Res* 4:30 (2002)

D. Eyre (2002)

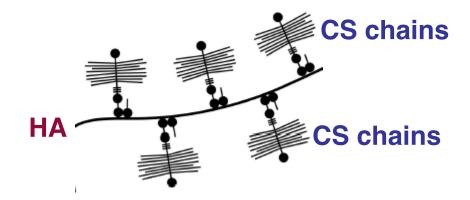
Proteoglycans are bulky and charged


- PG: proteins with GAG side chains
 - GAG is glycosaminoglycan
 - many charged groups: COO⁻, SO₃⁻
 - electrostatic repulsion
- Main cartilage PG is aggrecan
 - GAG is primarily chondroitin sulfate (CS)
 - aggrecans polymerize via hyaluronin (HA)

Chondroitin sulfate (public domain image)

Aggrecan monomer

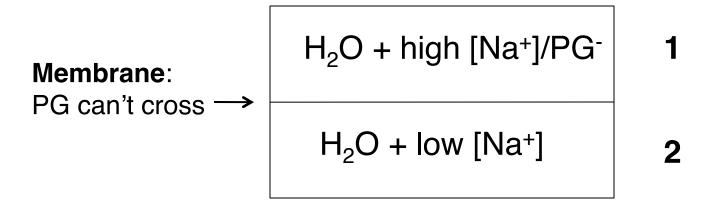
R.V. lozzo *Annu Rev Biochem* 67:609 (1998)



PG form aggregates of varying sizes

- Monomer > 1M, aggregates > 100M Da
- Average size decreases
 - with age
 - with osteoarthritis (OA)
- Aggrecenase inhibitors may be an OA target
- High negative charge density leads to osmotic swelling

Aggrecan aggregate


C.B & W. Knudson Cell & Dev Bio 12:69 (2001)

Principles of osmotic pressure

- Water must have equal chemical potential in both compartments: $\mu_{H2O,1} = \mu_{H2O,2}$
- Solutes decrease μ, pressure increases μ
- Infinite water would equalize [solute], but influx limited
- Charges must also be balanced (Donnan equilibrium)

Simplified cartilage model

Cartilage structure and function

Cartilage composition

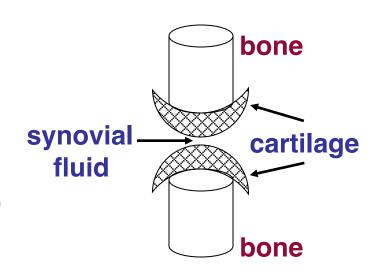
dry weight: CN 50-75%; PG 15-30%

water: 60-80%

– cells: 5-10% (v/v)

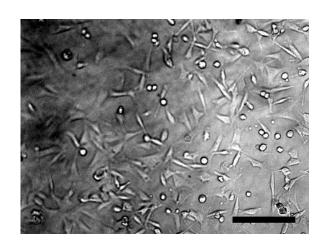
Requirements of a joint

- load transfer (bone/bone, bone/muscle)
- flexibility, lubrication


Role of PG

- high compressive strength (osmotic swelling)
- low permeability reduces wear, H₂O bears some load

Role of CN


- high tensile strength (~GPa)
- contain swelling forces of PG

V.C. Mow, A. Ratcliffe, and S.LY. Woo, eds. *Biomechanics of Diarthrodial Joints* (Vol. I) Springer-Verlag New York Inc. 1990

Lecture 2: conclusions

- Diverse biomaterials are used in TE.
- Cell-material interactions can be (+), (-), or neutral.
- Hydrogels are useful for soft tissue engineering: similar properties and easily tunable.
- The composition of cartilage supports its functions.

Next time... cell viability and imaging; intro to standards in scientific communities.