SYNTHETIC BIOLOGY & INTELLECTUAL PROPERTY

Sam Auyoung Ben Howell Arshia Randhawa

Natalie Warrick Jeanie Yi

Introduction

<u>Agenda</u>

- 1. IP 101
- 2. Origins of IP
- 3. Engineering
- 4. Ethnography
- 5. Ethics

We took the MIT parts registry as our case study and looked at some of the justifications for development of the parts registry as well as some of the implications of the parts registry as a tool for innovation and development within the field synthetic biology.

Intellectual Property 101

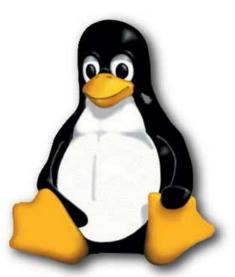
Intellectual Property in the U.S.

- What is the difference between a copyright and a patent?
 - Functionality
- Who enforces copyright/patent laws?
- How long do copyrights/patents last?

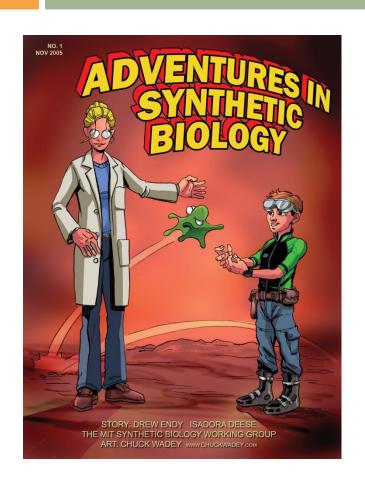
Copyright
Patent
Trademark
U.S.P.T.O.
U.S.C.O.
Civil suits

IP Rights Management in Synthetic Biology

- Analogy to software industry
- Adoption of an "open culture"
- Possible strategies:
 - Copyleft licenses
 - Patents
 - Non-assertion statements
 - □ Sui generis legislation
- M.I.T.'s current strategy: Public Domain


A Brief History of Intellectual Property

- Patents as Privilege
 - "letters patent"- bestowed upon by the state
- IP and the Advent of Liberal Democracy
 - Property as the right of an individual
 - Patent as a method of protecting the IP of an individual
 - Protecting intellectual property as a way of doing business
- The Corporation as a Person
 - IP rights extended to corporations
 - Patent ownership
 - Legal protection against infringement similar those granted to individuals


The Open Source Challenge

- Current practice defeats the original intent of patents
- Analogy to open source software as a means of encouraging innovation and competition
- Open source as a business strategy
 - Success of hardware companies:
 - IBM
 - Linksys
- The future of intellectual property?

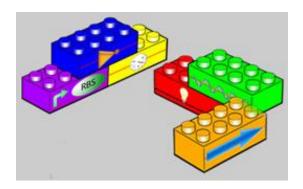
Synthetic Biology as Engineering and Intellectual Property

Synthetic Biology as Engineering

Defining *synthetic biology*¹:

- design and construction of new biological parts, devices, and systems
- n. re-design of existing, natural biological systems for useful purposes

¹From syntheticbiology.org


Modern Engineering Practices

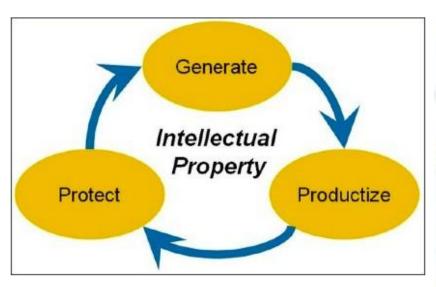
PROBLEMS

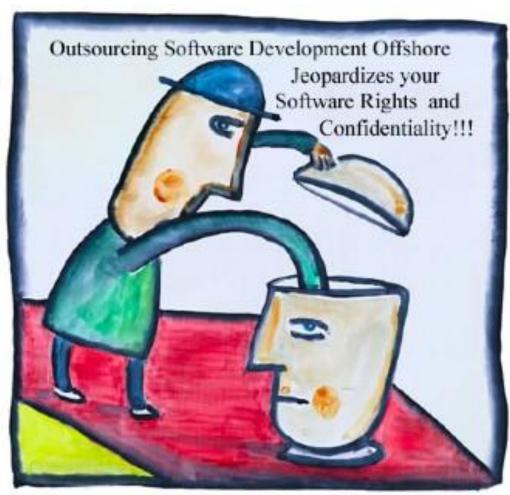
- Professionalisation (Who is a synthetic biologist?)
- Language (How do you talk about synthetic biology?)
- Organization (How are decisions made?)
- Standardization (What/How/Why are standards defined?)

M.I.T.'s ANSWER

- Registry of Standard Biological Parts
- BioBricks Foundation

Registry of Standard Biological Parts


- Defines boundaries of what is synthetic biology outside of other defined areas of Molecular Biology & Biological Engineering
- As engineering, they can be successful while not fulfilling the requirements of scientific proof in the name of utility
- As a new science/engineering, they can de novo devise novel practices
- As an appeal to a modern engineering practice, it can blackbox the history and requirements of standardization


Registry of Standard Biological Parts

IP Culture in Biotech

Interviews with the Experts

Procedure & Questionnaire

PROMPT: Please complete the background section. If you have time, please also complete as much of the Intellectual Property section as you can. If you decide to choose a few questions, please explain why you made the choice and include whether you have had direct experience or are just particularly passionate about it.

Questionnaire: Background

- What is your background in science?
- What is your current status as a student or professional (Graduate + Year or Post-Doc + Year or Professor + how many years have you been teaching)?
- What project are you working on? Specifically which thrusts? Human practice? Parts? Devices? Chassis?
- 4) Where do you see the project in 5 years? Synthetic Biology?

Questionnaire: Intellectual Property

- How are the P.I.s sharing knowledge amongst themselves within the university and outside of it?
- Do you think that standardization and abstraction are the necessary steps toward building a common space for the parts registry?
- 3) Do you foresee any problems with such protocol?

Interview with Kevin Costa

- Q: How are the PIs working within the center with respect to Intellectual Property?
- A: "The universities can do basic research and technological innovation in a way that companies cannot, but conversely, those same companies are much better versed at dealing with patents and intellectual property."
- Q: How would you imagine human practices with respect to issues like intellectual property?
- A: "My thinking on this is in flux these days, and I'm coming to believe that Human Practices should not be so focused on IP. "

Interview with Jonathan Goler

Q: Where do you see your project in 5 years?

A: "Hopefully done and deployed."

Q: Where do you see synthetic biology heading?

A: "Right now, into the dumpster, but hopefully it will work out and standardized parts and functional composibility will work."

Interview with MaryAnne McCormick

- Q: Would you say that the problem right now in framing the question of how synthetic biology is being formulated concerns the ethical standpoint of collaboration, or would the concerns are over whether such exchanges are actually feasible?
- A: "When you look at the universities structure: There are many things that scientists and technologists have to do because they are associated. Synthetic biology is very different but the same time very similar to other fields... basic research and certain structures are put in place...when a scientist signs up to be researcher they are obligated to release all of their intellectual properties. The open source registry is in alignment with the prevailing attitude that the registry is correct in confirming the humanitarian causes of the research."

Ethics & Business

Ethical Claim of Open Source

- Open Source and the BioBricks registry
- As a social movement (Chris Kelty)
- Merging two disciplines that are completely independent of one another as an avenue to create a new scientific discipline

Trademarking BioBricks

- What is value branding?
 - BioBricks as a value brand
 - Branding through iGEM

"A 'biobrick' is a type (brand) of standard biological part. The words "biobricks" and "biobrick" are adjectives, not nouns. The BBF [BioBricks Foundation] maintains the 'biobrick(s)' trademarks in order to enable and defend the set of BioBrick™ standard biological parts as an open and free-to-use collection of standard biological parts."

University of Calcary, Canada

Missouri Western State University, USA

UCSF, USA

UC Berkeley, USA

Caltech, USA

University of Artsona, USA

University of Artsona, USA

University of Oklahoma, USA

University of Toxas, USA

Prairie View A&M University, USA

Rice University, USA

National Polytechnical Institute, Mexico

Purdue University, USA
University of Michigan, USA
University of Toronto, Canada
McGill University, Canada
Boston University, USA
MIT, USA
Harvard University, USA
Unown University, USA
Cold Spring Harbor Laboratory, USA
Princeton University, USA
Davidson College, USA
Perin State University USA
Mississappi State University, USA

University of Edinburgh, Scotland
University of Cambridge, England
Imperial College, England
Freiburg University, Germany
ETH Zurich, Switzerland
University of Ljubljana, Slovenia
UPV-DV Valencia, Spain

Chungbuk National University, South Korea
Tokyo Institute of Technology, Japan
Chiba University, Japan

NCS3 Bangalore, India

Team Africa

Team Latin America

Conclusion: Great Concept...

Questions & Answers (maybe)