

A synthetic E.coli predator-prey ecosystem

FK Balagaddé, H Song, J Ozaki, CH Collins, M Barnet, FH Arnold, SR Quake, L You Molecular Systems Biology 4:187 (2008)

Presented by Kelly Drinkwater 20.385 Week 13 May 5, 2010

Predator-prey oscillation

Frank Hoppensteadt. "Prey-Predator Cycles". http://www.scholarpedia.org/article/Predator-prey_model

Translating into E.coli using AHL signals

Note IPTG induction of cooperation at Plac/ara-1

Microchemostats

It oscillates!

First round of assumptions

- Logistic cell growth
- First-order decay
- Constant synthesis of AHLs
- Simplified kinetics
- No basal promoter activity
- Ignore diffusion in medium
- No crosstalk AHLI/AHL2

Quasi-steady-state assumptions

- mRNA, LuxR, LasR, and ccdB are steady
- QSSA really means "changes fast compared to gene regulation & cell growth"
- Further QSSAs changed qualitative behavior, killed oscillation completely.

Final simplified diffEQ model

$$\frac{dc_{1}}{dt} = k_{c1}c_{1}\left(1 - \frac{c_{1} + c_{2}}{c_{\max}}\right) - d_{c1}c_{1}\frac{K_{1}}{K_{1} + A_{e2}^{\beta}} - Dc_{1} + \varepsilon \cdot \xi$$

$$\frac{dc_2}{dt} = k_{c2}c_2 \left(1 - \frac{c_1 + c_2}{c_{\text{max}}}\right) - d_{c2}c_2 \frac{A_{e1}^{\beta}}{K_2 + A_{e1}^{\beta}} - Dc_2 \left(+ \varepsilon \cdot \xi\right)$$

$$\frac{dA_{e1}}{dt} = k_{A1}c_1 - (d_{Ae1} + D)A_{e1} + \varepsilon \cdot \xi$$

$$\frac{dA_{e2}}{dt} = k_{A2}c_2 - (d_{Ae2} + D)A_{e2} + \varepsilon \cdot \xi$$

Noise terms

 $c_1 = predators$

 $c_2 = prey$

 A_{e1} = predator signal

Ae2 = prey signal

dci = cell death rate const

 K_1 = regulator synthesis

 β = cooperativity

D = dilution rate

kai = signal synthesis

d_{Aei} = signal decay

Recall...

IPTG changes system behavior

Modeling effect of IPTG

(Predator, Prey)

Hopf bifurcation:
system eigenvalue
crosses imaginary axis,
qualitative behavior
change

System is not stable in cells

- Hard to avoid: ccdB exerts strong evolutionary pressure
- Makes time-courses short and messy due to microchemostat
- Lesson: Kill-switch design is hard

Contributions

- Constructed working predator-prey system
- Pioneered use of microchemostat
- Modeled system behavior under different conditions

Synthetic cooperation in engineered yeast populations

W Shou, S Ram, JMG Vilar PNAS 104:6 (2007)

CoSMO

- Big contribution: STABILITY
- Auxotrophy-based codependence (recommended to my 20.20 group)
- Useful basis for many kinds of cooperative systems

Problem: nutrients release w/ cell death

Why not export metabolites??

But it still seems to work

+ overproduction of Ade/Lys

Viability depends on initial conditions

Population ratio stabilizes near 1:1

Range:

~I:5 - 5:I

Increased robustness over long term

How? Evolved better metabolite sharing?

Contributions

- Built symmetrically cooperating yeast system
- Stable over the long term
- Derived constraints on viable initial conditions
- Demonstrated convergence to a small population ratio

Considerations for biofuels project

- Use auxotrophy-based codependence instead of inducer-based (evolutionarily stable)
- Tune final population ratio for best nutrient recycling
- Take care with initial conditions, possibly supplement cultures at first
- Self-regulation strictly necessary?
 (Probably still a good idea)