M1D4: Prepare protein expression system

02/19/2016

Course 20 | Course 7 | Course 5 | Course 10B | Course 6-7

> **2/25 4:30-5:30** 56-614

Present your research to a variety of undergrads and get a UROP!

Refreshments will be served!

RSVP at: https://goo.gl/A69WLQ

Email questions to biotech-undergrad-officers@mit.edu

Sponsored by:

SPRING IS HERE!

You are invited to a BE / "Course 20"

Spring Term Open House

for faculty, staff & undergraduate students.

Friday, February 26, 2016

Between 2:30pm and 4:30pm stop by anytime, stay as long as you like

Room 16-341

Come for refreshments, good company and BE swag!

Today in lab

- Isolate mutants DNA by Qiagen mini-prep
- Obtain BL21(DE3)pLysS in mid-log phase, make them competent, and transform with X#Z #1, X#Z #2, wt IPC, or no DNA
- Prepare mutant DNA for sequencing
- Count colonies from X#Z plate

Results & Discussion section for M1 summary

State concisely in bullet point:

Use this slide as a checklist!

- 1. What was the overall goal of the experiment? (introductory sentence)
- 2. What was your expected result?
 - What are the expected band sizes on your gel?
- 3. What evidence do you have that your result is correct or incorrect?
 - What controls did you perform and did they work as expected?
- 4. What was the result?
 - Were bands of the expected size present? Why or why not?
- 5. In sum, what do these data suggest or indicate? Think about how the data were used.
- 6. What does this motivate you to do next?

Assignments for M1

- Protein engineering summary draft
 - due by 5pm on Saturday, March 12
 - revision due by 5pm on Monday, March 28

Summary content

- 1. Title
- 2. Abstract
- 3. Background, Motivation
- 4. Figures, Results & Discussion, Interpretation
- 5. Implications, Future Work

- Mini presentation due on March 16
- Blog post for M1 due March 29

Since last time...

Only 1 W/F team had colonies. Show me your pipetting skills!

Transformation controls & outcomes

sample	expectation / what if?	role
no DNA	no colony. What if many? wrong antibiotic contamination	negative control
control NEB SDM	many. What if none/few? resistant anymore bad kit killed NEB 5alpha cells	positive control for reagents, for technique
your X#Z or wt IPC	what if X#Z << control? damaged plasmid or low transformation toxic plasmid low [plasmid], poor SDM efficiency	experiment

Mini-prep to isolate DNA using QlAprep kit by Qiagen

	steps	contents	purpose	
	prepare P1	Tris/EDTA buffer RNase	resuspend NEB 5alpha cell weaken the cell walls	Is
	lyse P2	SDS surfactant NaOH alkaline lysis	solubilize proteins, denature DNA	
	neutralize N3	accele dela, chace opic sait,	hort (plasmid) renature ong DNA (rest of E. Coli) pre	cipitate
4			clear lysate	
	concentrate	spin: bind to silica column	pellet "garbage"	
:	wash PB, PE	ethanol use 'Qiagen waste'	** get rid of <i>all</i> ethanol	
	elute	water, pH 8.0	high-purity DNA	
ŭ				

DNA vs. protein amplification in NEB 5α vs. BL21(DE3)pLysS)*E. Coli*

- "BL21" can express IPC protein
 - when induced by lactose analog...
 - ...review details on M1D5!

Transform BL21(DE3)pLysS competent cells

- can express IPC protein
- made competent by CaCl₂
 - Ca²⁺ ions attract both
 DNA and liposaccharides
 - heat shock
- in exponential growth phase
 - OD₆₀₀ = 0.4-0.8
- handle very gently, or will lyse
 - on ice all the time, and with chilled solutions **fragile
 - not vortexed **
- Cam (chloramphenicol) resistant
 E. coli strain
 - also Amp (ampicillin) resistant if
 IPC insert uptaken

A few brief notes on *E. coli* growth curve

- exponential phase
 - binary fission
 - OD600 ~ 0.4 0.8
 - machinery ready
- OD ≠ absorbance
 - OD: optical density
 - scattering, turbidity

yellow cells don't absorb 600 nm light!

UV light not safe

Today in lab

- Quiz
- Pretab
- Isolate mutants DNA by Qiagen mini-prep
- Obtain BL21(DE3)pLysS in mid-log phase, make them competent, and transform with X#Z #1, X#Z #2, wt IPC, or no DNA
- Prepare mutant DNA for sequencing
- Count colonies from X#Z plate

Tips to write Methods section

- Use subsections with descriptive titles
 - Put in logical order
 - Begin with topic sentence
- Use clear and concise full sentences
 - Avoid tables and lists
 - Passive voice expected
- Use the most flexible units
 - Write concentration rather than volume

Homework due M1D6

- Methods from M1D3-M1D5:
 - Eliminate '109 specific details
 - Report concentrations (NOT volumes)
 - Do not include details about tubes and water
 - Avoid repeating information
 - Use sub-section titles
 - Include topic sentences in each section