MOD1 – DNA ENGINEERING

Spring 2010

Day 3

Research theme in DNA Engineering Module

Lecture 1: Intro to importance of HR

Lecture 2: How HR works

Lecture 3: Why understanding matters: BRCA2 and HR

Lecture 4: Exploiting Scientific Understanding for

Engineering: BRCA2 targeted therapies

Lecture 5: Measuring HR in genotoxicity testing, using HR in genome engineering of mice

Lecture 6: Journal article discussion

Lecture 7: Statistics

Lecture 8: Flow Cytometry: How it works and how to do it

Experimental techniques in DNA Engineering Module

Lecture 1: PC

Lecture 2: Restriction digestion

Lecture 3: Agarose gel electrophoresis

Lecture 4: Ligation and transformation

Lecture 5: Diagnostics
Lecture 6: Cell culture
Lecture 7: Transfection
Lecture 8: Flow Cytometry

Agarose Gels & Gel Purification

- -How do we 'look' at DNA?
- -How do we get our DNA out of a gel?
- -What will we do with it once we get it?

Agarose Gels - How do we 'look' at DNA?

- -Loading
- -Standards
- -Parameters that affect migration
 - -gel concentration
 - -length of DNA
 - -tertiary structure
 - -effects of overloading

Agarose Gels & Gel Purification

- -How do we 'look' at DNA?
- -How do we get our DNA out of a gel?
- -What will we do with it once we get it?

Gel Purification

Why do you need to cut out your band fairly quickly?

You will need to dissolve the gel to get the DNA out.. You do this by adding 3 volumes of a gel-dissolving solution.

What does it mean to 'add 3 volumes'?

How can you estimate the volume of your gel slice?

Agarose Gels & Gel Purification

- -How do we 'look' at DNA?
- -How do we get our DNA out of a gel?
- -What will we do with it once we get it?

