Cell Viability; Standards in Scientific Communities I

Module 3, Lecture 3

20.109 Spring 2014

Lecture 2 review

- What properties of hydrogels are advantageous for soft TE?
- What is meant by bioactivity and how can it be introduced?
- What are the two major matrix components of cartilage and how do they support tissue function?

Image: VC Mow, A Ratcliffe, SLY Woo, eds *Biomechanics of Diarthrodial Joints* (Vol I). Springer-Verlage New York Inc., 1990.

Module 3 learning goals

- Lab concepts/techniques
 - 3D mammalian cell culture and phenotypic assays
- Discussions in lecture
 - engage with meta-scientific issues, ethics, etc.
- Short informal report
 - accountability to 20.109 community
- Research idea presentation
 - investigate literature independently
 - exercise scientific creativity
 - design experiments to address a specific question

Topics for Lecture 3

- Cell viability
 - measurement
 - contributing factors
- Standards in scientific communities
 - general engineering principles
 - standards in synthetic biology
 - standards in data sharing

Module progress: week 1

- Day 1: culture design
 - What did you test?

- Day 2: culture initiation
 - Cells receiving fresh media every day
 - Half of volume exchanged, half kept

Fluorescence microscope parts

Light source

Epifluorescence: lamp (Hg, Xe)

Confocal: laser (Ar, HeNe)

2-photon: pulsed laser

Filter cube

- Excitation
- Dichroic mirror
- Emission
- Band-pass vs. long-pass

Detection

CCD camera: photons → voltages → pixel intensities

Image from: Lichtman & Conchello, Nature Methods 2:910 (2005)

Specifications for M3D3 imaging

- Live/Dead Dyes
 - Green 490 ex, 520 em
 - Red 490 ex, 620 em
- Excitation 450-490 nm
- Dichroic 500 nm
- Emission 515⁺ nm

Images from: Nikon microscopy website: www.microscopyu.com

M3D3 viability assay

Green stain: SYTO10 = viability Red stain: ethidium = cytotoxicity

Assay readout: fluorescence

Working principle? Relative cell-permeability

Types of cell death

Apoptosis

- programmed cell death
- role in development, immunity
- cells condense, nuclei fragment
- misregulation may cause disease

Necrosis

- response to trauma
- cells burst and release contents
- promotes inflammation
- Different morphology and biochemistry

Image: S. Elmore *Toxicol Pathol* 35:495 (2007)

Factors affecting cell viability

- Cell-related
 - density
 - contact
- Cytokine-related
 - proliferative
 - apoptotic
- Materials-related
 - bulk permeability
 - macro-porosity
 - toxicity

Diffusion in 3D constructs

- Nutrients and O₂
- Affected by
 - construct size R
 - cell density ρ
 - diffusivity D
 - conc. in medium $[O_2]_{bulk}$
- Concentration profile
 - can be solved Diff-Eq
 - [O2] ↓ toward center
 - steepness = $f(D, \rho, ...)$

Modeling cell viability in TE constructs

- Porous PLGA scaffolds
- Seeded cells as in (A) or (B)
- Observed after 10 days
- Model includes
 - Diffusion
 - $-O_2$ use
 - Cell growth
- Model assumes
 - [O₂]_{bulk} is constant
 - Quasi-steady state

A Cells in odd layers

		- 20 10
	1	
	2	
	3	
	4	
-	5	

B Cells in all layers

J Dunn, et al. *Tissue Eng* **12**:705 (2006)

Viability model and experiment

- A more uniform than B
- Cell growth matches O₂ tension
- Claim of predictive capability

Distance from edge

Dunn, et al.

Significance of diffusion in TE

- Characteristic limit ~100 μm
- Diffusion and viability profiles correlated
- How can we make thick tissues?

in vitro: dynamic/perfusion culture

in vivo: promote rapid angiogenesis

perfusion system zeiss.com.sg

Interlude: limitations of the p-value

David Colquhoun via mikethemadbiologist.com2014/04/10/p-values-and-power-of-test-why-so-many-results-cant-be-replicated/

Thinking critically about module goals

- Local: compare 2 culture conditions → cell phenotype?
- Global: toward cartilage tissue engineering
- All well and good, but...
- Can we move beyond empiricism tissue engineering
- Broadly useful biomaterials example
 - goal: wide degradation range
 - result: times from weeks to years
 - process: models and experience

$$\begin{array}{c|c} O & O & O & O \\ \hline & C & O & O & O \\ \hline & C & O & O & O \\ \hline & C & O & O & O \\ \hline & C & O & O & O \\ \hline & C & O & O & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & O \\ \hline & C & C & C & C \\ \hline & C & C &$$

"a lot of chemical calculations later, we estimated that the anhydride bond would be the right one"

Image and quote: Robert Langer, MRS Bulletin 31 (2006).

Biology: too complex to engineer?

- Systematic vs. ad hoc approach
- D. Endy, Nature 438:449 (2005)
- Need for "foundational technologies"
- Decoupling
 - e.g., architecture vs. construction
- Abstraction
 - e.g., software function libraries
- Standardization
 - screw threads, train tracks, internet protocols
- What can and/or should we make standard to engineer biology?

Public domain image (Wikimedia Commons)

Apply principles to synthetic biology

- Synthetic biology, in brief: "programming" cells/DNA to perform desired tasks
 - artemisinin synthesis
 - genetic circuit
- Decoupling
 - DNA design vs. fabrication (rapid, large-scale)
- Abstraction
 - DNA → parts → devices → systems
 - materials processing to avoid unruly structures
- Standardization
 - standard junctions to combine parts
 - functional (e.g., RBS strength)
 - system conditions
 - assays

Not fair game for quiz

Assembly standard for plasmids

X + S: same overhang, but ligation yields neither site

Development: T.F. Knight, R.P. Shetty, D. Endy; Image: neb.com

Not fair game for quiz

Functional standard for promoters

Absolute promoter strength

Variation due to cell strain, equipment, media, lab, etc.

(white & grey = 2 promoters)

Relative promoter strength

Variation reduced 2-fold.

(same 5' UTR)

J.R Kelly et al., *J Biol Eng* **3**:4 (2009)

Lecture 3: conclusions

- Cell viability in TE constructs is affected by cell, material, and soluble factors.
- Standardizing data sharing and collection is of interest in several BE disciplines.

Microarray data

From D. Endy, *Nature* **438**:449 (standardized biological "parts")

Next time: TE-specific lecture and *discussion* of standards.