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In the bioremediation process, coexistence of lead (Pb) and cadmium causes
complex toxicity, resulting in the difficulty of bioremediation. This study
investigated the physiological responses and bioaccumulation mechanisms of the
typical filamentous fungus Aspergillus niger under the coexistence of Pb and Cd.
Four treatments were set up, i.e., control, sole Pb, sole Cd, and coexistence of Pb and
Cd. The morphology of A. niger were observed by scanning electron microscopy
(SEM) and transmission electron microscopy (TEM), respectively. Then, nano-scale
secondary ion mass spectrometry (NanoSIMS) was applied to accurately investigate
the distribution of heavy metals in the fungal cells under the coexistence of Pb and
Cd. Finally, the metallogenic process and mineral types were simulated by
Geochemist’s Workbench (GWB). The electron microscopic and NanoSIMS
imaging showed that Pb and Cd were accumulated in both the extracellular and
intracellular regions of the A. niger cells. In particular, the accumulated Pb content
was ten times higher than that of Cd. However, Cd showed stronger toxicity than Pb
to A. niger. Compared with the control treatment, Cd stress resulted in a two-fold
increase of cell diameter and more extracellular substances, whereas the cell
diameter increased nearly four times in the coexistence treatment. Moreover, the
bioaccumulation of Pb was more intense than that of Cd during competitive
sorption. The GWB simulation confirmed that Pb2+ can form multiple minerals
(e.g., PbC2O4, PbHPO4, and Pb3(PO4)2, etc.), which significantly weakened its
toxicity on the cell surface. This study elucidated the morphological
characteristics of A. niger and competitive bioaccumulation under the
coexistence of Pb and Cd, which would facilitate the application of
microorganisms to the bioremediation of coexisted metals.
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1 Introduction

Heavy metal pollution caused by anthropogenic activities is increasing (Jarup, 2003; Hou,
2021). The coexistence of heavy metals in sewage and solid wastes derived from mining,
smelting, and electroplating industries usually causes compound pollution (Song et al., 2022).
Lead (Pb) and cadmium (Cd) are the two most common heavy metals (Yang et al., 2018).
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According to the national communique of soil pollution survey by the
Ministry of Environmental Protection of China, the over-limit rates of
Pb and Cd were 1.5% and 7.0%, respectively (MEP of China, 2014).
Thus, the coexistence of Pb and Cd is one of the most common
combined pollutions (Gao et al., 2010; Chen et al., 2015).

Aspergillus niger is a representative phosphate-solubilizing fungus
in soil (Khan et al., 2014). It could produce abundant organic acids and
extracellular degradative enzymes to accelerate the release of
phosphate (Tian et al., 2021). Thus, A. niger has been widely
applied to bioremediation (Tian et al., 2020; Yang et al., 2020).
Aspergillus niger had more stable heritability and a strictly stronger
acid-producing capacity than bacteria and many other fungi (Sharma
et al., 2013; Yu et al., 2021). The oxalic acid (H2C2O4) secreted by A.
niger could efficiently precipitate heavy metal cations (Yakout, 2014).
In addition, heavy metals could be accumulated in both intracellular
and extracellular regions of fungal cells (Kapoor and Viraraghavan,
1997; Qiu et al., 2021; Geng et al., 2022). Thus, the filamentous fungus
A. niger has been considered as an ideal strain for heavy metal
bioremediation (Ahluwalia and Goyal, 2007; Ren et al., 2009;
Zegzouti et al., 2020). However, previous studies mostly focused on
remediation of a single heavy metal (Gola et al., 2016; Tian et al., 2019;
Okolie et al., 2020). Therefore, lacking knowledge of bioaccumulation
under the coexistence of Pb and Cd impeded the application of
microorganisms in the remediation.

The sorption capacity of A. niger to Pb was usually higher than that of
Cd due to their different affinity to negative charges on cell surface (Amini
& Younesi, 2009; Okolie et al., 2020).Aspergillus niger had higher tolerance
concentrations of Pb than Cd, i.e., >1,500mg/L for Pb and only 100mg/L
for Cd (Tian et al., 2019; Okolie et al., 2020). Moreover, Pb-oxalate was
easier to be precipitated than Cd-oxalate, as the solubility product constant
(Ksp) of Pb-oxalate is nearly three orders of magnitude less than Cd-
oxalate (Pb oxalate: Ksp = 2.74 × 10−11; Cd oxalate: Ksp = 1.42 × 10−8)
(Benitez and Dubois, 1999; Johansson et al., 2008). Therefore, the
responses of A. niger to Pb and Cd should be correlated to a series of
factors under the coexistence system.

Scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) were suitable for observing the surface
morphology and internal structure of microorganisms, respectively
(Jiang et al., 2021; Su et al., 2021). In the interaction between
microorganisms and heavy metals, the metallogenesis and mineral
crystal structure were observed by SEM (Bhattacharya et al., 2018;
Chen et al., 2019; Tian et al., 2019; Xu et al., 2021). Significant changes
in the sizes of microbial cells have been observed under metal
stimulation based on SEM imaging (Gola et al., 2016; Sharma
et al., 2017; Jiang et al., 2020). In addition, TEM could identify
intracellular and extracellular adsorption of heavy metals based on
its resolution up to nanometre scale (Zhu et al., 2017). Furthermore,
the fine observation by TEM elucidated a new cell wall formation
under Pb stress (Tian et al., 2019).

Nano-secondary ion mass spectrometry (NanoSIMS) owns high
sensitivity when investigating microchemistry (Guerquin-Kern et al.,
2005). Recently, the potential of NanoSIMS as a new tool in the study
of bio-interface has been demonstrated (Yu et al., 2020). The high
sensitivity, high lateral resolution (50 nm for Cs+ primary ion beam
source), and high mass resolution (~4,000X) for secondary ions qualify
the NanoSIMS as a powerful tool for investigating elemental composition
(e.g., C, N, P, and halogen elements) on microbial samples (Popa et al.,
2007). However, NanoSIMS technology is rarely applied to the studies of
microbial responses to heavy metals.

In this study, we investigated the morphological responses and
metallogenic mechanisms of A. niger to the coexistence of Pb and Cd.
SEM and TEM were used to elucidate morphology characteristics and
internal structures of A. niger cells. Then, NanoSIMS was applied to
identify the distribution of cell composition elements and heavy
metals. Finally, based on Geochemist’s Workbench (GWB), the
mineralization of Pb and Cd cations was simulated, which would
provide a theoretical understanding of bioremediation.

2 Materials and methods

2.1 Fungal strain and incubation

Aspergillus niger strain information can be referred to our
previous study (Qiu et al., 2021). The fungus accession number
in China General Microbiological Cultural Collection Center
(CGMCC) is No. 11544. Aspergillus. niger was cultured in
potato dextrose agar (PDA) medium at 28 °C for 5 days. After
spore formation, the medium was drenched with sterile water. The
spores were scraped carefully from the plate surface with a fine
brush. Then, the suspension was filtered through a three-layer
sterile cheesecloth to eliminate mycelial fragments. The
concentration of spores was measured by haemacytometer. The
initial count of spores was 107 cfu mL−1.

2.2 Experimental design

Four treatments were performed, i.e., CK (no metal addition), TPb
(sole Pb addition), TCd (sole Cd addition), and TPbCd (addition of Pb
and Cd). The concentrations of Pb and Cd addition were both
.893 mmol/L. Three replicates were set for each treatment. The
solid Pb(NO3)2 powder (Xilong Scientifc Ltd.) and Cd(NO3)2
powder (98% cadmium nitrate tetrahydrate, Sigma Aldrich Inc.)
were added to 100 mL potato dextrose broth (PDB) medium. After
sterilizing the medium, 1 mL spore suspensions were added to the
medium for incubation. The initial pH value of the inoculation system
was set as 6.5. All the treatments were incubated at 28°C for 5 days
under 180 rpm shaking.

2.3 Experimental instruments and analytical
methods

After the incubation, the precipitates and supernatant were
separated by centrifugation (2,504 rcf, 10 min). The precipitates
were dried at 65°C for 24 h for subsequent analyses.

2.3.1 SEM analysis
The samples were fixed by 2.5% glutaraldehyde for 4 h. After the

samples were rinsed with .1 M sodium phosphate buffer (pH = 7.4),
ethanol of 30%, 50%, 70%, 85%, 90%, and 100%was used for dehydration
of the precipitates. Finally, isoamyl alcohol was applied to dry the
precipitates in a freeze-dryer for 48 h. The samples were pasted on the
platform with conductive adhesive for SEM analysis. The image
acquisition was tested by Carl Zeiss SUPRATM 55 system. Gold
particles by Gressington 108 Autosputter coated the samples to
improve electrical conductivity and prevent thermal damage. Semi-
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quantitative analysis was performed by Oxford Aztec X-Max 150 energy
dispersive X-ray spectrometer (EDS).

2.3.2 TEM analysis
The processing of the samples for TEM analysis can refer to our

previous study (Tian et al., 2019). The precipitate was pre-fixated with
electron microscopy fixative (G1102, Servicebio, Wuhan, China) and
fixed again by osmic acid. The samples were prepared as ultrathin
sections (60–80 nm thickness). The field-emission transmission
electron microscope was performed by FEI Tecnai G2 F20S-TWIN
system equipped with AZtec X-Max 80T energy dispersive
spectrometer (EDS).

2.3.3 NanoSIMS analysis
The precipitates collected from the TPbCd treatment were

analyzed by NanoSIMS. The sample preparation processes were
similar to the process for preparation of TEM samples. After
embedding, the sample was sectioned with 400 nm thick slices. The
element observations were performed with a NanoSIMS 50 (Cameca,
Courbevoie, France). A Cs + primary ion beam was used to

FIGURE 1
The SEM images of Aspergillus niger after 5 days incubation in the CK (A, B), TPb (C, D), and TCd (E, F) treatments. The representative particles on the
mycelial surface in images C and E were selected for EDS analysis.

FIGURE 2
The SEM image of Aspergillus niger after 5 days incubation in the
TPbCd treatment. The representative spots of P1 and P2 were selected
for EDS analysis.
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continuously bombardmicrobial cells on the sample surface. Then, the
secondary ions were sputtered and liberation from the upper surface.
These secondary ions were sorted based on their energy in the
electrostatic sector before being dispersed in a mass spectrometer
according to their mass/charge ratios. By acquiring a series of spatially
referenced spectra, maps of 16O−、12C14N− (characterize
nitrogen (N)), 208Pb16O− and 114Cd16O− were produced for the
atomic mass.

2.3.4 GWB modeling
Geochemist’s Workbench (GWB 11, Aqueous Solutions LLC.)

was applied to simulate mineralization of the metals. Under the
Titration mode, using React module to simulate ion concentration
changes with pH value in the system. The concentrations of Pb2+

and Cd2+ in the system were set based on the experimental design.
The maximum concentration of H2PO4

− was set to 10 mmol/L (Qiu
et al., 2021). The phase diagram of the dominant minerals was
drawn by Act2 module. The mineralization of Pb and Cd were

subsequently simulated when reaching an equilibrium state at each
site of the system.

3 Results

3.1 SEM and EDS analyses

In the CK treatment, the typical diameter of A. niger hypha was
~2 μm (Figures 1A,B). In the TPb treatment, the hypha has a typical
diameter of ~3 μm (Figures 1C,D). The value increased to 5–6 μm in
the TCd treatment (Figures 1E,F). Moreover, the hyphae were tightly
interwoven under Pb stress, but loosely arranged under Cd stress.

The mycelia showed rough surface with the enrichment of
particles. In the TPb treatment, the particle diameter varied
between .1–.5 μm (Figure 1D). In contrast, the particle diameter in
the TCd treatment was larger, i.e., 1–2 μm (Figure 1F). The
representative particles on the mycelial surface were selected for

FIGURE 3
The TEM images of morphological changes of Aspergillus niger after 5 days incubation in the CK (A, B), TPb (C, D), and TCd (E, F) treatments. Cell
diameters of representative cells were shown.
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EDS analysis. In the TPb and TCd treatments, the weight percentage of
Pb and Cd accounted for 38.57% and 14.83%, respectively (Figures
1C,E). In the TPbCd treatment, the mycelia were arranged tightly and

orderly. The diameter of hypha was ~5–6 μm, which was much larger
than those in the other treatments (Figure 2). Meanwhile, the Pb and
Cd weight percentage at P1 was 51.2% and 9.27%, respectively. The

FIGURE 4
The TEM images of morphological changes of Aspergillus niger after 5 days incubation in the TPbCd treatment. Cell diameters of several representative
cells were shown. Representative Pb and Cd nano-particles (NPs) were shown.

FIGURE 5
The TEM images of the rectangular regions in Figures 4A image (A) and 4C image (B) at high-resolution (slight offset might occur). Three representative
spots (P1, P2, P3) were selected for EDS analysis as shown in images (C–E) respectively.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Pan et al. 10.3389/fbioe.2022.1096384

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1096384


content of Pb was nearly five times higher than Cd. The Pb content at
P2 was 1.26 wt%, yet Cd was under the detection line (Figure 2).

3.2 TEM and EDS analyses

In the CK treatment, the cell diameter was about 2–3 μm (Figures
3A,B). There was almost no extracellular substances. The cell wall
thickness was around .1 μm.Moreover, no evident black particles were
observed (see Figures 3A,B). In the TPb treatment, the cell size or the
cell wall thickness showed no significant change (Figures 3C,D).
However, the abundance of extracellular substances was increased,

which were attached loosely to the cell walls. The particles were
enriched near the vacuoles (Figures 3C,D). In the TCd treatment,
the cell diameters were increased to 5–6 μm, and the cell wall thickness
was increased to .3 μm. Meanwhile, the extracellular substances were
secreted to form a dense layer outside the cells. Moreover, the particles
were not only distributed in the intracellular region, but also adsorbed
on the extracellular substance surfaces (Figures 3E,F).

In the TPbCd treatment, the cell diameter was enlarged to
7–11 µm under TEM, which was about twice of that in the TCd
treatment and four times of that in the CK treatment (Figure 4).
Moreover, the particles were enriched in both the extracellular and
intracellular regions of the cells (Figure 4). It should be noted that the
circles with a diameter of ~5 µm were the microgrid membrane holes.
The cells of A. niger were marked by dotted circles (Figure 4).

The representative micro-regions (marked as rectangular in
Figure 4C) were selected for high-resolution observation. It showed
that the particles aggregated in the extracellular region, while
dispersedly distributed in the intracellular region (Figures 5A,B).
The weight percentage of Pb in P1 and P2 was 31.08% and
21.40%, while that of Cd was as low as 4.06% and 3.41%,
respectively. No signal of Pb or Cd was detected in P3 (Figures 5C–E).

3.3 NanoSIMS analysis

The spatial distribution of the secondary ions 16O−, 12C14N−,
208Pb16O−, and 114Cd16O− under the TPbCd treatment were
displayed in Figure 6. The intense 16O− signals were indicated in
the dashed rectangular area (see Figure 6A). In contrast, the strong
12C14N− signals appeared in the intracellular region (Figure 6B). The
12C14N− was used to characterize the contour and position of cells as N
has been considered as an indicator of biogenic matters (Romer et al.,
2006). Moreover, several weak 12C14N− signal circles were observed,

FIGURE 6
NanoSIMS images of Aspergillus niger cells in the TPbCd treatment. (A) 16O− secondary ion image; (B) 12C14N− secondary ion image; (C) 208Pb16O−

secondary ion image; (D) 114Cd16O− secondary ion image.

FIGURE 7
The concentration curve of the main ion species varying with
pH value after 5 days incubation in the TPbCd treatment.
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which might be attributed to the dead cells undergoing/after
cytoplasm decomposition. In addition, the enrichment of both
208Pb16O− and 114Cd16O− were higher in the extracellular region
than that in the intracellular region (Figures 6C,D).

3.4 GWB simulation

The geochemical modeling under the TPbCd treatment showed
that the concentrations of Pb2+ and Cd2+ were decreasing along with
the decline of H+ and C2O4

2− concentrations (Figure 7). In addition,
the Pb2+ concentration was always lower than that of Cd2+, which
indicated that Pb2+ was easier to form mineralized precipitation (with
occurrence of C2O4

2−) than Cd2+ (Figure 7).
The phase diagrams revealed the mineralization processes of Pb

and Cd (Figure 8). In the TPb treatment, the mineral was Pb-oxalate
when pH < 5.2, while the mineral types increased to Pb3(PO4)2,
PbHPO4, and Pb5(PO4)3OH when pH > 5.2 (Figure 8A). In the TCd
treatment, most Cd existed as free cations when pH < 3. When pH <
3.8 and H2PO4

−>.4 mmol/L, the system was dominated by
Cd5(PO4)3OH. When pH > 3.8 and H2PO4

−<.4 mmol/L, oxalate
minerals dominate the mineralization (Figure 8B).

In the TPbCd treatment, Pb presented as Pb-oxalate when
pH value and H2PO4

− concentrations were relatively low
(Figure 8C). Compared with the TCd treatment, Cd-oxalate was
not formed when pH > 3.8 and H2PO4

− < .4 mmol/L (Figures
8B,C). Only when pH and H2PO4

− concentrations continue to
increased, Cd2+ cations were mineralized to Cd5(PO4)3OH. In
addition, Pb induced a variety of minerals, such as Pb3(PO4)2,
PbHPO4, and Pb5(PO4)3OH (Figure 8C).

4 Discussion

In this study, A. niger showed distinct responses to Pb and Cd
stresses. This was consistent with the conclusion that Pb
concentrations <1,000 mg/L could promote biological activity
(Sayer et al., 1999). Therefore, the secretion of extracellular
substances would subsequently be promoted (Figure 3). However,
the tolerance of A. niger to Cd was much weaker due to its high toxicity
and migration (Wu et al., 2016). The biomass of A. niger was
significantly lower under Cd stress than the CK and Pb treatments
(Wang, et al., 2017; Qiu, et al., 2021). The dead cell lysis would also
release intracellular organic matters (Li, et al., 2021), which were

FIGURE 8
Diagrams of Pb and Cd phase with the changes of pH and H2PO4

− concentrations in the TPb treatment (A), TCd treatment (B), and TPbCd treatment (C).

TABLE 1 Solubility product constants (Ksp) of typical Pb and Cd compounds.

Functional groups Chemical formula Ksp References

Pb

Carboxyl groups -COOH 2.74 × 10−11 Lee et al. (1999)

Phosphate groups -H2PO4 8.0 × 10−43 Martinez et al. (2004)

Hydroxyl -OH 1.2 × 10−15 Frost and Williams (2004)

Carbonate -CO3 7.4 × 10−14 Yao et al. (2013)

Chromate -CrO4 2.8 × 10−13 Zheng et al. (2017)

Sulfate radical -SO4 1.6 × 10−8 DeSantis et al. (2018)

Cd

Carboxyl groups -COOH 1.42 × 10−8 Wang et al. (2017)

Phosphate groups -H2PO4 2.53 × 10−33 Dmitrevskii et al. (2008)

Hydroxyl -OH 5.27 × 10−15 Canepari et al. (1998)

Carbonate -CO3 1.0 × 10−12 Remacle et al. (1992)

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Pan et al. 10.3389/fbioe.2022.1096384

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1096384


adsorbed around the living cells to isolate the contact between the cells
and heavy metals. In addition, the extracellular substances and cell
debris had similar functional groups (Li, et al., 2012), which were
mainly composed of proteins, polysaccharides, lipids, and humic acids
(Lin et al., 2014). Their negatively charged functional groups could
adsorb heavy metal cations (Comte et al., 2008; Dang et al., 2018).
Therefore, the abundance of extracellular organic substances are able
to form a protective layer of A. niger to immobilize metals.

Microbes can adapt to environmental changes by regulating
their morphology (Guan et al., 2020). This study revealed the
phenomenon of the enlargement of the cross-section of hyphae
under the coexistence of Pb and Cd (Figure 3). Moreover,
appropriate Pb2+ in the coexistence system could significantly
enhance microbial activities by promoting the tricarboxylic acid
cycle of A. niger (Qiu et al., 2021). This response to heavy metals
was also observed in A. niger sporangia which were increased by
50% (Xu et al., 2021). When A. niger was exposed to heavy metals, it
preferred to promote the surface area by expanding the cell volume.
The larger cell surface provided more active sites for adsorbing
more heavy metal ions (Smyth, 1989). This mechanism was also
consistent with the study regarding the resistance of bacteria to Cd
toxicity (Keene et al., 2008).

The NanoSIMS mapping showed that the bioaccumulation of
Pb and Cd was more intense in the extracellular than intracellular
region. Aspergillus niger could secrete a variety of low-molecular-
weight organic acids (LMWOAs) (Strobel, 2001; Li et al., 2016).
Oxalic acid was the most abundant LMWOAs (Yakout, 2014).
Compared with other LMWOAs, oxalic acid had a higher acidity
constant (pKa1 = 1.25; pKa2 = 4.27), which facilitated the
formation of oxalate precipitation to reduce metal toxicity
(Green and Clausen, 2003). In addition, Pb had higher
competitive accumulation than Cd in the coexistence system.
The competitive accumulation of Pb and Cd also existed in the
bioremediation by bacteria. For example, a study of Pseudomonas
putida showed that Pb2+ had almost the same sorption sites as Cd2+

on the cell surface (Du et al., 2016). Moreover, the bioaccumulation
efficiency of Exiguobacterium sp. to Pb was also higher than that of
Cd (Park and Chon, 2016).

The GWB simulation showed that Pb2+ and Cd2+ competed for
oxalate species (C2O4

−) in the coexistence system (Figure 7). Pb2+ was
preferred to generate oxalate minerals due to that Pb-oxalate usually
has a lower Ksp value than Cd-oxalate (Benitez and Dubois, 1999).
Furthermore, Pb2+ could form a variety of mineral species (e.g., Pb
oxalate (PbC2O4), PbHPO4, and Pb3(PO4)2). However, Cd2+ cations
were commonly mineralized as Cd5(PO4)3OH. Additionally, it was
attributed to the stronger affinity between Pb and amino acid residues,
which induces theKsp of Pb-containing compounds lower than that of
Cd (Table 1). Therefore, in the coexistence of Pb and Cd, Pb2+ was
more easily mineralized. The mineralization finally immobilized and
detoxified the cations.

5 Conclusion

This study identified the physiological responses and
metallogenetic mechanisms of A. niger to Pb and Cd stress. Our
findings confirmed that the filamentous fungus A. niger had multiple
pathways to effectively adsorb heavy metal ions, e.g., producing
LMWOAS, secreting extracellular substances, and enlarging the cell
surface area. Therefore, A. niger shows evident advantages in the
bioremediation of heavy metals. In the coexistence system, Pb had
preferential bioaccumulation than Cd, which allowed that most Pb
cations could be mineralized and detoxified. This study sheds a light
on the remediation of the coexistence of metals by functional fungi.
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