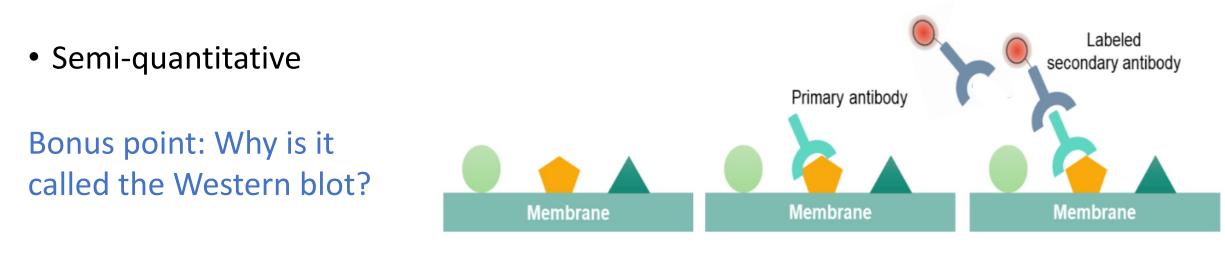
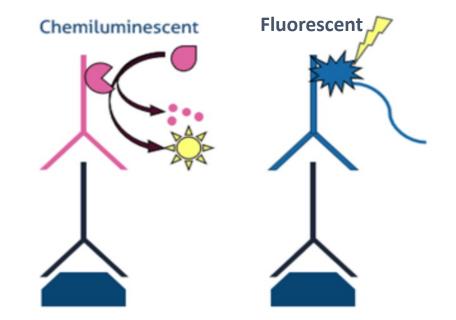

M2D7: Complete CETSA experiment and analyze data

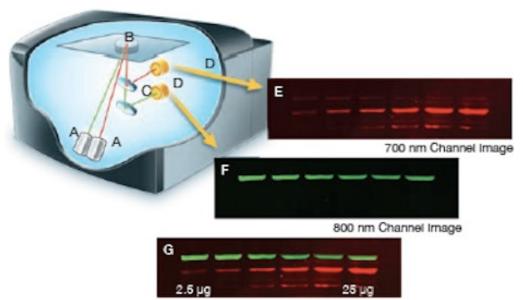
- Prelab discussion
- Analyze CETSA data
- Work on Research Article


WWW. PHDCOMICS. COM

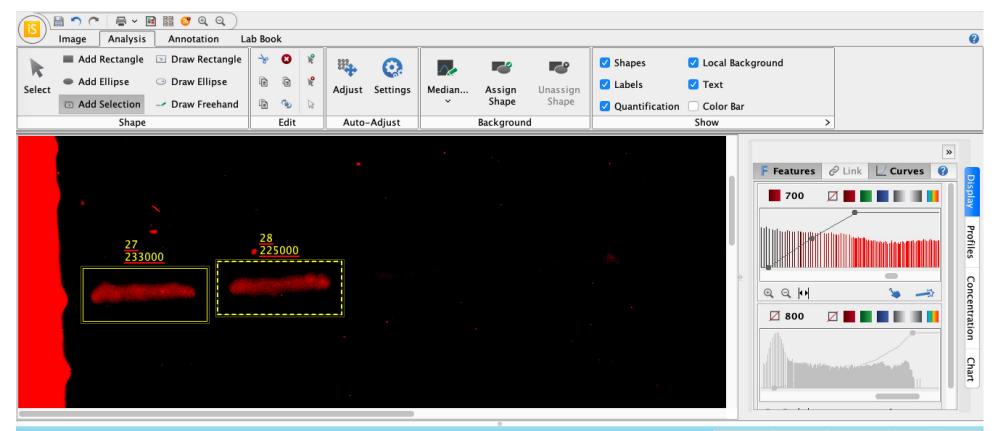
• Quiz


Western blotting

- AKA: immunoblotting
- Uses Primary antibody raised against proteins of interest to identify protein bands on the blot
- Uses Secondary antibody raised against the species of the primary antibody to visualize primary antibody binding to the protein of interest


Visualizing western blots

- Once you have antibodies bound to your protein of interest, you need to visualize it
- Most common ways:
 - Chemiluminescence
 - HRP
 - Film
 - Fluorescence
 - IR
 - Digital scan


Visualizing your Western blot

- Licor System
- Uses infrared conjugated secondary antibodies
- Lasers inside Licor box allows excitation of 700 and 800nm wavelengths
- Produce overlaid image from both channels to identify protein of interest and loading control on the same blot

Overlaid Images

How will we analyze the data?

📑 Images 🛛 🍝 Shapes

	Image Name	Channel	Name	Signal	Total	Area	Bkgnd.	Туре
	10011321 01	/00	21	202000	3770000	20500	C01	Signai
	0011357 01	700	22	565000	3910000	20500	163	Signal
	0011357 01	800	23	9920000	10800000	17088	50.0	Signal
	0011357 01	800	24	9260000	10100000	17088	50.0	Signal
	0011357 01	800	25	4130000	4980000	17088	50.0	Signal
	0011357 01	800	26	3910000	4770000	17088	50.0	Signal
	0011357 01	700	27	233000	2220000	12483	159	Signal
	0011357 01	700	28	225000	2180000	12483	157	Signal

🖀 Filter 👌 🗟 Report 👌 📾 Columns 🕼 Copy 🕼 Paste

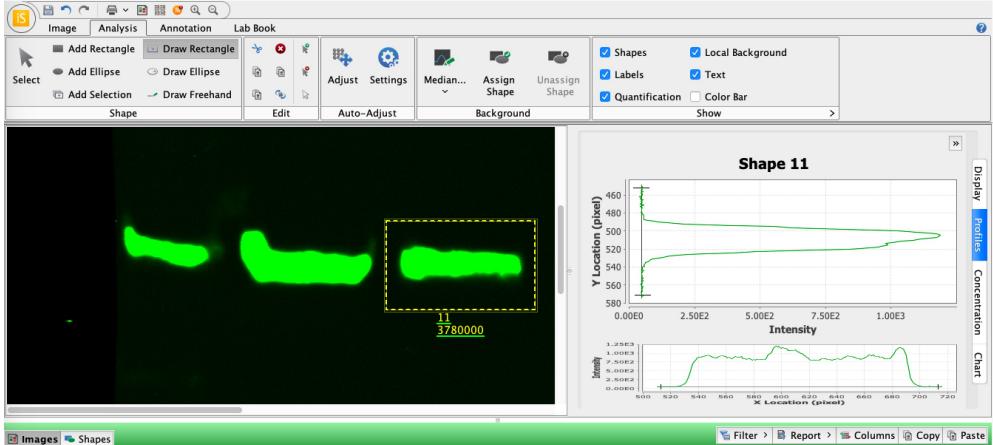
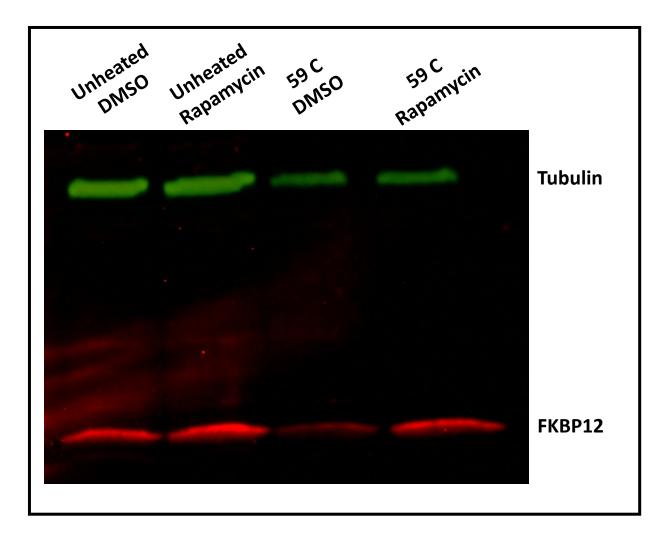

Analyzing CETSA WB with Image Studio

Image Name	Channel	Name	Signal	Total	Area	Bkgnd.	Туре
0011361_01	700	29	719000	2820000	11394	184	Signal
0011361_01	700	30	939000	2920000	11394	174	Signal
0011361_01	700	31	348000	2180000	11394	161	Signal
0011361_01	700	33	868000	2700000	11394	161	Signal

- <u>Image Name</u>: Name of entire image in Image Studio
- <u>Channel</u>: Wavelength of signal detection (700 or 800)
- <u>Name</u>: Number assigned to rectangle drawn around a band. Each rectangle for each channel will have a unique number
- <u>Total</u>: Sum of individual pixel intensities in the rectangle
- <u>Area</u>: Total number of pixels enclosed by the rectangle
- <u>Bkgnd</u>: Value assigned for background subtraction (default= mean pixel intensity of background)
- <u>Type</u>: What being measured (i.e. signal or background). More relevant for manually determining background.
- <u>Signal</u>: Sum of the pixel intensity values in the rectangle minus the product of the background and area


Signal = Total – (Background x Area)

Assessing signal quality of the protein bands

/ Image ID	Acquire Time	Channels	Resolution	Intensities	Image Name	Comment	Image Modifications
0011494_01	Nov 21, 2019 5:00:50	700 800	42um	3.0 3.0	0011494 01		
0011357_01	Aug 29, 2019 11:38:09	700 800	42um	3.0 3.0	0011357 01	[
0011361_01	Sep 3, 2019 1:04:32 P	700 800	42um	3.0 3.0	0011361 01		
0011502_01	Nov 22, 2019 1:31:11	700 800	42um	3.0 3.0	0011502 01	[
0011503_01	Nov 22, 2019 1:44:13	700 800	42um	3.0 3.0	0011503 01		
0011493_01	Nov 21, 2019 4:46:08	700 800	42um	3.0 3.0	0011493 01	[
0011492_01	Nov 21, 2019 4:24:03	700 800	42um	3.0 3.0	0011492 01		
0011495 01	Nov 21 2019 5:13:18	700 800	42um	3030	0011495 01		

Example analysis from previous semester data

Dala.							
	FKBP12 Signal Ratio to Unheated DMSO						
Unheated DMSO	1						
Unheated Rapamycin	1.305980529						
59 C DMSO	0.484005563						
59 C Rapamycin	1.207232267						

Analysis:

Data

- The heated DMSO treated group shows a 50% loss of FKBP12 signal compared to the unheated DMSO group.
- Rapamycin treatment stabilized the FKBP12 protein so that it maintained unheated levels of expression.
- Tubulin decreased with heat, but there was no apparent effect of Rapamycin on Tubulin stabilization.

Research Article (AKA: Read the Wiki)!

Title/Abstract:10%Introduction:10%Methods:20%Results:50%Discussion:10%

- Write in paragraphs
- Submit a Word Doc OR PDF
- Figures can be incorporated into the Word document OR be a separate file

Research Article: Introduction and Methods

Introduction:

- Tell a cohesive story
 - Use transitions to link ideas together to create the story
 - Don't forget the hourglass narrative!
- Start with "big picture" and zoom in to your specific research question

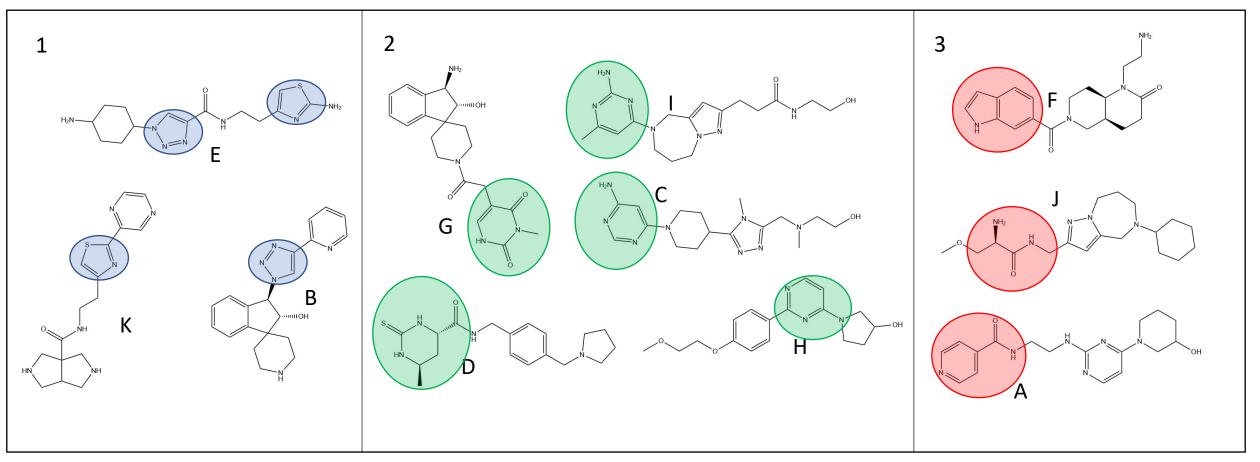
Methods:

- Revise the draft you've produced
- Add jupyter notebook methods (extra gift on M2D3)
- Add CETSA methods

Jupyter notebook methods

The analysis of images to quantify the intensity and position of the 635nm signal associated with putative small molecule binders was performed using Python code integrated in a Jupyter notebook (a gift from Rob Wilson, Koehler Laboratory). The signal-to-noise ratio (SNR) from each compound was used to calculate the robust Z-scores for each compound averaged over replicates, and the "hits" were identified as compounds with Z-score > 5.

Research Article: Results


- Make the figure title a take-home message (emphasize the conclusion)
- Use a topic sentence at the beginning of the figure caption
- Introduce the overall goal of the experiment
- Detail the data presented
 - Point out controls
 - Don't forget to address all data you present
 - Focus on what you see, leave interpretation (what it means) for the discussion
- Transition to the next experiment

Research Article: What figures do you want to include?

Research Article: Discussion

- Reiterate the overall goal of the experiment and the major finding(s)
- Discuss the data presented
 - What is particularly interesting?
 - What does this data indicate?
- Propose experiments to address deficiencies in the data/technique
- Keep the order of the discussion the same as the results
- Transition to future work and overall conclusions (tie back into the big picture)

Examine binders to identify common structures

- Manuscript writing allows for data interpretation
- Be careful not to overinterpret
 - Reviewers will reject a paper where conclusions aren't considered justified

For Today

- Analyze CETSA data
- Work on Research Article
- Quiz @ 3:30pm
- Notebook to be checked is M2D1

For M3D1

• Read Mod3 overview and M3D1 Introduction