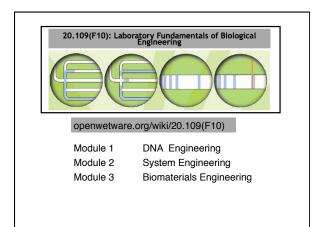
Welcome to 20.109

Laboratory Fundamentals of Biological Engineering


Orientation Lecture Fall 2010

20.109

Laboratory Fundamentals of Biol Eng

Course Mission

- To prepare students to be the future of Biological Engineering
- To teach cutting edge research skill and technology through an authentic research experience
- To inspire rigorous data analysis and its thoughtful communication

expressing fluorescent protein in mouse embryonic stem cells

• Use fluorescence to analyze recombination of variously damaged DNA substrates

Lab Skills

- · Retrieve and manipulate sequences from databases
- Clone PCR-amplified DNA fragments
- Transfect mammalian cells
- Flow Cytometry

System Engineering: Bacterial photography

Lab Skills

- Optimize a system
- Genetic screen
- Western analysis
- Sequence analysisβ-gal assay

Experiments

 Measure bacterial photography output
 Screen library for mutations that increase dynamic range of system
 Identify amino acid changes and their

consequences

Biomaterial Engineering: Phage battery

f.

Experiments Grow gold nanowires on phage surface

- TEM to visualize
- Assemble battery
- Measure capacity

Lab skills

- Phage material production
- · Fabrication of bio-based device
- Effect of variation: % Au vs % Ag

Expectations

Some of your expectations of us

- that we will come to class and lab prepared
- that our assignments are clear and reasonable
- that we will treat every 109er with respect

that we will give everyone equal chance at success

Some of our expectations of you

· that you will come to class and lab prepared

- · that you will not interfere with each other's learning
 - · that you will invest the very best of yourself
 - · that you will offer honest and frequent feedback

Course Details

Lecture Tuesdays and Thursdays 11-12, 4-153

- LabTuesdays and Thursdays1-5, 56-322
 - There are no "make-up" labs

Work must be turned in on time

reports, homework: at beginning of lab lab notebook pages: at end of lab

> You will perform experiments in pairs Assignments can be worked on together but submitted individually

	"Celeb	J		
45% Written Work		Modules 1 and	2	
30% Oral Presenta		ations Modules 2 and	Modules 2 and 3	
	5% Dail	nework Assignments ly Lab Quizzes Notebooks		
	5% Blo	and Summary		
Module		g and Summary	% of Final Grad	
Module		, ,	% of Final Grad	
Module	Торіс	Assignment		
Module	Торіс	Assignment "Progress Report"	15	
1	Topic DNA Engineering System Engineering	Assignment Progress Report* P3*	15 5 25	
1 2 3	Topic DNA Engineering System Engineering	Assignment "Progress Report" "P3" research article	5 25	

Foundations/Skills

• Basic Laboratory Skills following and designing protocols first-hand experience with equipment and procedures how to keep a lab notebook

- Robust Quantitative Analysis of Data statistical analysis when appropriate repetition of protocols to assess quality of findings effect of experimental perturbations on outcome
- Verbal and Written Communication
 two oral presentations
 three written reports
- Critical Thinking

analysis and discussion of primary scientific literature

"what we learn to do we learn by doing..."