Assays for gene expression and protein production

Module 3, Lecture 5

20.109 Spring 2012

Topics for Lecture 5

- Measuring protein levels
- Measuring transcript levels
- Imaging assays

Sounds boring! Why bother?

- In 20.109, we tell you what assays to perform
 - designs vary, but measurement paths are identical
- In real research, you must decide not only what is worth measuring but how to measure it
 - sometimes just choosing among existing technologies
 - sometimes inventing something novel or customized
- Hey... this type of thinking also happens to be relevant to the M3 proposal!

Module overview: 2nd half

Purify mRNA from cells —— Prepare complete cDNAs——

Run qPCR to measure CN II, CN I, and 18S RNA.

Antibodies are specific and diverse

- Specificity
 - variable region binding, K_D ~ nM
 - linear or conformational antigens
- Diversity
 - gene recombination
- Production
 - inject animal with antigen, collect blood
 - hybridomas (B cell + immortal cell)

Public domain images (Wikimedia commons)

Day 5-7: protein analysis by ELISA

- ELISA: enzyme-linked immunosorbent assay
 - specific
 - sensitive
 - multiple kinds

"blocking" step also needed

= protein
of interest

Common protein-level assays

PAGE

- simple and low cost
- Coomassie detection limit ~ 0.3-1 ug/band (2-5 ng/band for silver staining)
- cannot distinguish two proteins of same MW

Western blot

- identifies specific protein
- detection limit ~1 pg (chemiluminescent)
- only simple for denatured proteins

ELISA

- detects native state proteins
- quantitative
- high throughput

Common transcript-level assays

- RT-PCR (end-point)
 - simple, low cost
 - can be semi-quantitative
- Microarrays (end-point)
 - high cost, need specialty equipment
 - complicated and fraught analysis
 - high throughput
- q-PCR (real-time)
 - some special equipment, medium cost
 - highly quantitative
 - multiplexing potential
 - requires optimization (primers)

Current Protocols in Cell Biology, Molecular Biology

End-point RT-PCR

- Co-amplification in one tube
 - Collagen + GAPDH
- Optimize primers
 - no cross-hybridization
 - similar signals (vary [primer])
 - similar efficiency
- Reliability issues
 - must be in exponential phase
 - sensitive to change in [RNA]
- Visualize on a gel
 - measure band intensity/area
 - low dynamic range

Collagen (upper band)
GAPDH (lower band)

Which sample is from chondrocytes, and which from stem cells?

Introduction to qPCR

- Real-time tracking of [DNA]
- Uses probes that fluoresce
 - when bind to any DNA
 - when bind to specific DNA (FRET)
- How and why does [DNA] change during PCR?
 - first plateau
 - exponential phase
 - linear phase
 - second plateau
 - detection limit
 - competition, reagent limits, inhibition
- Starting point for analysis: threshold cycle C_T

Current Protocols in Cell Biology, Molecular Biology

Interlude: science intersecting with politics and the limits of evidence

- Recommendations to reduce routine screening for breast and prostate cancers
 - physical/emotional stress of unnecessary biopsies
 - catching cancers that would recede or never spread
 - unlike colon, detected late-stage cancers hardly down, while early stage detection way up

References

- S.H. Woolf, JAMA (2010) 303:162 (commentary)
- "In Shift, Cancer Society Has Concerns on Screenings" nytimes.com Oct 21, 2009

Day 5-6: image analysis

- Imaging data is often high throughput
 - 4D: time, *x-y-z*
 - requires computation, and
 - human design/interpretation
- Many available analysis packages
 - some ~ \$20-30K
 - NIH ImageJ = free
- Your analyses
 - automated cell counts
 - optional: explore other features

Images from: T.R. Mempel, et

al. Nature 427:154 (2004)

Image quality in microscopy

- Epifluorescence: noisy due to out-of-plane light
- Confocal: pinhole rids out-of-plane light; scanning
- 2-photon: femtoliter volume excited; good depth (IR)

Epifluorescence

Confocal

Confocal uscopy permits 3D reconstruction

Fluorescence microscopy

Light source

- Epifluorescence: lamp (Hg, Xe)
- Confocal: laser (Ar, HeNe)
- 2-photon: pulsed laser

Filter cube

- Excitation
- Dichroic mirror
- Emission
- Band-pass vs. long-pass

Detection

CCD camera: photons → voltages → pixels

Image from: Lichtman & Conchello, *Nature Methods* **2**:910 (2005)

Specifications for Day 3 imaging

- Live/Dead Dyes
 - Green 490 ex, 520 em
 - Red 490 ex, 620 em
- Excitation 450-490 nm
- Dichroic 500 nm
- Emission 515⁺ nm

Images from: Nikon microscopy website: www.microscopyu.com

Lecture 5: conclusions

- Antibodies to diverse targets (e.g., proteins) can be made and used for detection/measurement.
- Trade-offs exist (e.g., between simplicity and accuracy) for different transcript-level assays.
- Fluorescence imaging is a powerful tool for studying cells and materials.

Next time: cartilage TE, from *in vitro* and *in vivo* models to the clinic; qPCR analysis.