Cell viability in TE constructs

Module 3, Lecture 4

20.109 Spring 2009

Lecture 3 review

- What engineering principles may be useful food-for-thought in BE?
- What difference in live and dead cells is exploited in the Day 3 assay?

Topics for Lecture 4

- Cell viability
 - background
 - relation to diffusion
 - your data
- Fluorescence microscopy
- Overview: remainder of Module 3

Types of cell death

Apoptosis

- programmed cell death
- role in development, immunity
- cells condense, nuclei fragment
- misregulation may cause disease

Necrosis

- response to trauma
- cells burst and release contents
- promotes inflammation
- Distinguish by morphology or biochemistry

Images: S. Elmore *Toxicol Pathol* **35**:495 (2007)

Factors affecting cell viability

- Cell-related
 - density
 - interactions
- Cytokine-related
 - promote viability or proliferation
 - promote apoptosis
- Materials-related
 - bulk permeability
 - pore size, percent porosity
 - toxicity

Nutrient use in 3D constructs

- Relevant parameters
 - size of construct R
 - cell density ρ
 - diffusivity D
 - conc. in medium $[O_2]_{bulk}$
- Concentration profile
 - can be solved
 - [O2] ↓ toward center
 - steepness depends on above parameters

Diffusion limits

- Characteristic diffusion limit (nutrients, O₂): ~100 μm
- Diffusion and viability profiles correlated
- Solution in vitro: dynamic/perfusion culture
- Solution in vivo: promote angiogenesis quickly

Diffusion- limited regime (high consumption)

Modeling cell viability in TE constructs

- Porous PLGA scaffolds
- Seeded cells as in (A) or (B)
- Observed after 10 days
- Model includes
 - Diffusion
 - O₂ use
 - Cell growth
- Model assumes
 - [O₂]_{bulk} is constant
 - Quasi-steady state

A Cells in odd layers

B Cells in all layers

Dunn, et al. *Tissue Eng* **12**:705 (2006)

Dunn et al. results for cell viability

- A more uniform than B
- Cell growth matches O₂ tension
- Claim of predictive capability

Distance from edge

Modeling diffusion in a defined porosity

- Geometrically defined space
- Simulate particle motion
- Brownian dynamics
 - Idealized point particles
 - Excluded volume (can't cross wall)
 - Equations of motion
- Monte Carlo
 - Finite particles
 - Excluded volume (wall and particle)
 - Boltzmann probabilities to evaluate steps

S. Shanbhag et al. *Biomaterials* **26**:5581(2006)

Results: diffusion in a defined porosity

- Upper bound: $D_{scaffold} = 0.3 D_{soln}$
- Decreases with inter-pore size
- ... w/particle size
- ... w/ confinement
- ... w/ consumption

Interlude: accessibility, audience

- Slings and Arrows
 S1E3, corporate seminar
- 2. Publishing and the petabyte age

 Letter re: publishing

 http://www.nature.com/nature/journal/v455/
 n7209/full/455026a.html

 Petabyte age issue

http://www.nature.com/nature/journal/v455/n7209/full/455001a.html

Module progress: week 2

- Day 3: viability/cytotoxicity testing
- Practical matters
 - focusing takes practice
 - signal:noise
- Groups generally found
 - mostly live
 - mostly round
 - some clustering
- How can we explain these results?
- How can we improve the assay?
- Possible trends

W/F Purple group

Fluorescence microscopy

Light source

- Epifluorescence: mercury, xenon
- Confocal: laser (Ar, HeNe)
- 2-photon: pulsed laser

Filter cube

- Excitation
- Dichroic mirror
- Emission
- Band-pass vs. long-pass

Detection

CCD camera

Image from: Lichtman & Conchello, Nature Methods 2:910 (2005)

Specifications for Day 3 imaging

- Live/Dead Dyes
 - Green 490 ex, 520 em
 - Red 490 ex, 620 em
- Excitation 450-490 nm
- Dichroic 500 nm
- Emission 515⁺ nm

Images from: Nikon microscopy website: www.microscopyu.com

Types of microscopy

- Epifluorescence: out-of-plane light makes noise
- Confocal: pinhole rids out-of-plane light
- 2-photon: femtoliter volume excited

Epifluorescence

Confocal

Confocal uscopy permits 3D reconstruction

Module overview

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas!

Lecture 4: conclusions

- Cell viability in TE constructs is affected by factors at the cell, materials, and cytokine level.
- Modeling is one useful tool to study the effects of nutrient diffusion on cell viability.
- Fluorescence imaging can be exploited to study both cells and scaffolds.

Next time: transcript and protein assays, in vitro and in vivo models for cartilage TE