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Goals

« Explore some essential roles of heme in
biology

* Appreciate how Nature has used the same
cofactor to achieve diverse functions

« (Gain some basic insight into how the cofactor
properties can be tuned by its
macromolecular environment



A sampling of porphyrins in Nature

Hemoglobin



Porphyrin structure

Porphyrins are “tetrapyrroles”
Features distinguishing

porphyrins

H 1. Functional groups
ﬂ\ /7 > —> > —> —> elaborated from this
basic tetrapyrrole
Pyrrole structure;
Basic chemical unit

2. ldentity of the
Porphine coordinated metal ion
= simplest porphyrin



Protoporphyrin IX

A biologically relevant porphyrin

Vinyl group
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Heme biosynthesis

. Complex, multi-step process Cytosol Mitochondrion
— Several enzymes Glycine aiycins
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Heme biosynthesis
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Some biologically relevant porphyrins

Hemes ~(" Lipophilic side chain
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Some heme properties correlated with function
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Heme coordination
sites

Resting redox state of iron (Fe?* v. Fe3*)

Affinity for non-protein derived ligand
— Impacted by iron redox state
— Some ligands bind Fe?* better than Fe3*

|dentity of the protein-derived ligand

— Amino acid (e.g. histidine, cysteine, methionine,
tyrosine) side chain

Shape of the heme cofactor



A survey of heme function



Hemoproteins and their functions

* Function: Oxygen transport
« Hemoglobins

— Non-protein ligand: O,

— Cofactor. heme b

— Resting redox state: Fe?*

— Protein ligand to heme: histidine

— Tetrameric protein
* 2a chains
* 2 B chains

— Each monomeric chain binds one
heme b molecule 4
4 hemes/tetramer )}i“
— Each heme can bind one O, :
atom
5; PDB

w



Hemoproteins and their functions

Enzymatic activity
— Cytochrome P450s

Non-protein ligand: O, (upon iron
reduction to Fe?* during catalytic
cycle)

Cofactor: heme b

Resting redox state: Fe3*

Protein ligand to heme: cysteine

Function:

— Detoxify xenobiotics =
foreign compounds
* E.g. medications;
environmental toxicants
— Catalyze reactions such
as: substrate oxidations




Hemoproteins and their functions

 Enzymatic activity

- Catalase:
— Non-protein ligand: H,0O,
— Cofactor. heme b
— Resting redox state: Fe3*
— Protein ligand to heme: tyrosine

* Function

— Protects against hydrogen
peroxide-induced oxidative
damage

— Breaks down hydrogen peroxide catalase

2H,0, > 2H,0 + O,

Catalase from H. Pylori (PDB accession: 2I1QF)



Hemoproteins and their functions

 Enzymatic activity

- Catalase:
— Non-protein ligand: H,0O,
— Cofactor. heme b
— Resting redox state: Fe3*
— Protein ligand to heme: tyrosine

* Function

— Protects against hydrogen
peroxide-induced oxidative
damage

— Breaks down hydrogen peroxide

Catalase from H. Pylori (PDB accession: 2IQF)



Hemoproteins and their functions

MITOCHONDRIAL ELECTRON TRANSPORT

Electron transport
chain: cytochromes

Mobile Electron Carriers: NADH, UQH,, cyto C2*
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Hemoproteins and their functions

Electron transport chain: cytochromes

Cytochrome bc1

— Non-protein ligand: None

— Cofactors: 2 heme b + 1 heme ¢

— Resting redox state: Fe3*

— Protein ligand to heme: 2 histidines

Function

— Electron transfer (not O, binding) is
the main function of the heme

— Bis-histidyl ligation prevents ligand
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Hemoproteins and their functions

 Electron transport chain: cytochromes

« Cytochrome c
— Non-protein ligand: None
— Cofactors: 1 heme c
— Resting redox state: Fe3*

— Protein residue binding heme: 2
histidines

 Function:

— Electron transfer

« Shuttles electrons from Complex Il to
Complex IV

 Bis-histidyl ligation excludes non-
protein ligand binding



Hemoproteins and their functions

Electron transport chain: s G Cowcn
cytochromes "*;»g"?.
cobb)Y Cys His

Cytochrome c oxidase
— Non-protein ligand:. None/O.;#

— Cofactors: 2 heme a N
— Resting redox state: Fe3* & |

. . . - (‘
— Protein residue binding heme: 3;‘

1 or 2 histidines

Function

— Electron transport only (heme
a — 2 histidine ligands)

— Electron transport AND O,
reduction (heme a3 — one Cytochrome c oxidase

histidine ligand) (Complex IV)




Hemoproteins and their functions
Allosteric regulation of enzymatic
activity:
Soluble guanylate cyclase (sGC)
— Non-protein ligand: NO (nitric oxide)
— Cofactors: heme b
— Resting redox state: Fe?*

— Protein residue binding heme: 1
histidine

Function

— NO binding to heme stimulates sGC
activity

sGC + NO Mediates vasodilation
GMP » CGMP — - Blood vessel relaxation (dilation)
- Better blood to tissues




Summary of heme cofactor properties

heme a cofactor ~ Non-protein ligand  Ligand fate

— Cytochrome ¢ O, (heme a3) — Reduced to H,0O

oxidase
None (heme a) — Electron transport

heme c cofactor
— Cyctochrome ¢ None — Electron transport

— Cytochrome c1 None — Electron transport



Summary of heme cofactor properties

heme b cofactor Non-protein ligand Ligand fate

— Hemoglobin O, — Transported intact

— Cytochrome P450 O, — Incorporated into product
— Catalase H,O, — Degraded

—-sGC NO — Unchanged by sGC

« Same cofactor, yet VERY different ligand binding properties

— How might this be achieved?
— How can the identity of the ligand binding the cofactor be tuned?

* Identical interacting ligand, yet VERY distinct outcomes possible!
— How might this be achieved?



S

* |ron oxidation status

— Fe?* (O,, NO, CO binding favored)
— Fe3* (H,0, H,0,, CN-(cyanide), N, (azide)

» |dentity of the side chains close to distal pocket
— Block access of certain ligands
— Stabilize bound ligand (e.g. H-bonding)

 Electron distribution in heme cofactor
— Protein derived side chain identity
— Heme distortion



Studying hemoproteins

« (Gaining insight into hemoprotein biochemistry
— Ligand binding status
— Oxidation state
— Porphyrin ring distortion

« X-ray crystallographic data not always available
— Even when available, cannot distinguish iron oxidation states



Studying hemoproteins

* Frequently used techniques:

— Electronic absorption spectroscopy (UV-vis)
* |ron coordination status (e.g. 5 versus 6 coordinate)
 |ron oxidation state

— Electron paramagnetic resonance (EPR)

* |[ron oxidation state

— Spin state (presence of paired versus unpaired outer shell
electrons)

— Resonance Raman & Infrared spectroscopy
(vibrational spectroscopy)
* Insight into distortion of heme structure



Coefficient [cm-1/M]

xtinction

,_
=
| .

Maolar

600,000

anm aon
300,000

200,004

100,000

Sample electronic absorption spectra

 Hemoglobin

— Maximum absorbance intensity
ﬂ in the 414 — 432 nm range

— “Soret” peak
—HbO2

—Hb

— Soret maximum is sensitive to
heme environment

« Ligand present versus absent

Distal site
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Wximal site

« HbO, (6 coordinate iron) ~ 414
nm Soret

300 350 400 450 500 550 GO0 650 TOO TS0 800 o Hb (5-Coordinate) ~ 432 nm

Wavelength [nm]
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Sample electronic absorption spectra

Think of absorption spectrum as
“fingerprint” for the hemoprotein
state

Absorption in this wavelength
range is sensitive to the:

— lron oxidation state (MetHb
= Fe’")

— lron coordination state (Hb
versus HbO,)

— Coordinated ligand (O,
versus NO)
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Jensen, F. B. J Exp Biol, 210:3387-3394 (2007)



Modulating heme properties

Bioorganic chemistry Antibody

C(CH
O§ / ( 3)3 C{CH3)3
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Figure 22,13

A synthetic, picket
fence heme
complex.
[Reproduced with
permission from
Collman, J. P. Acc.
Chem. Res. 4977,
10, 2651 -

Aptamers?

Zou S et al. PNAS 2002;99:9625-9630



Summary

 Nature uses the same basic cofactor to achieve
many distinct functions:
— Electron transfer
— Ligand transport
— Enzyme catalysis
— Allosteric regulation

» These distinct functions are possible because the
chemical properties of heme can be precisely tuned
by its macromolecular environment

— Nature uses several strategies to achieve the desired tuning

— Can we selectively tune heme properties to take advantage
of its rich chemistry?



