20.109

LABORATORY FUNDAMENTALS IN BIOLOGICAL ENGINEERING

MODULE 2

EXPRESSION ENGINEERING

Lecture # 3

Leona Samson

March 31st 2009

Snapshot of the next four weeks

We will eliminate the expression of various genes using

- (i) RNA interference technology
- (ii) Cultured mouse ES cells
- (iii) Chemiluminescent proteins
- (iv) DNA microarrays

Snapshot of the next four weeks

We will eliminate the expression of various genes using

- (i) RNA interference technology
- (ii) Cultured mouse ES cells
- (iii) Chemiluminescent proteins
- (iv) DNA microarrays

Various Genes

Mpg – Methyl Purine Glycosylase	DNA Repair gene
Trp 53 - transformation related protein	Transcription factor and tumor suppressor
Polr2d – RNA polymerase II polypeptide D	Non-essential subunit of RNA polymerase II
Tada2L – transcriptional adaptor 2	Transcriptional activator by chromatin remodeling
Nanog – transcription factor	ES cell-specific transcription factor

Mpg/Aag: Mammalian 3MeA DNA Glycosylase

Aag -/- Mouse ES cells are sensitive to methylating agents MMS and MeLex that produce 3MeA DNA lesions

Bevin Engelward

Trp53 - p53 - Transcription factor and tumor suppressor

Polr2d - RNA polymerase II polypeptide D

transcription-related HATs ATPase Remodelers **HDACs HMTs**

Tada2L -

transcriptional adaptor 2, activates by chromatin remodeling

Tada2L is part of a Histone Acetylase (HAT) complex

HDAC – Histone Deacetylase

HMT – Histone methyltranferase

Nanog – transcription factor

Nanog – transcription factor

Tír na nÓg - Land of the Ever-Young

A Mythological Celtic Land where fairies live

Snapshot of the next four weeks

We will eliminate the expression of various genes using

- (i) RNA interference technology
- (ii) Cultured mouse ES cells
- (iii) Chemiluminescent proteins
- (iv) DNA microarrays

siRNA knockdown of expression of Renilla Luciferase plus various mouse gene

Isolate total RNA in order to measure levels of specific mRNAs

Cells have lots and

OtS of ribosomes, most are lined up as polyribosomes in the Rough Endoplasmic Reticulum

Let's think about isolating RNA from mouse ES cells....what will we get?

mRNA

TRNA

rRNA

RNA Analysis

Formaldehyde gel

Hours of preparation and Run time

Ribosomal RNA
 bands - mRNA
 smeared in
 background

Agilent 2100 Bioanalyzer Automated Analysis System

RNA solutions

Guarantee high quality RNA for microarray sample preparation

Intact RNA

Monitor mRNA expression level for every mouse gene in one single experiment.

How can we measure the level of thousands of mRNA species present in a particular cell type?

Now that we know the DNA sequence for every gene, this is possible!

How did we measure mRNA levels one at a time? This depends on Nucleic Acid Hybridization

The specificity of G
pairing with C and A
pairing with T (or U)
drives hybridization and
provides a mechanism
for quantitatively
assessing the amount of
a specific mRNA species
in cells.

Lets first back-up. How did we measure mRNA levels one or two at a time? Northern Blots

How to monitor mRNA expression level for every gene: Global transcriptional profiling

- · Carry out thousands Northern Blots?
- ·Instead DNA microarrays were developed
- DNA microarrays for global transcriptional profiling were not feasible before the sequencing of whole genomes.

The immobilized mRNA population is probed (hybridized) with ³²P-labeled sequences specific for one or two genes

Paper towels

Paper wick

10XSSC

solution

Gel

Nylon membrane

Northern Blots

Immobilized mRNA population hybridized with labeled DNA probe representing one or two genes

DNA Microarrays

Immobilized DNA probes representing <u>all</u> possible genes hybridized with labeled mRNA population

Need to achieve two things:

- (i) Immobilize (array) thousands of DNA probes specific for each individual mRNA gene product
- (ii) Label mRNA populations

Up to 20,000 probes per slide
The probes can be cDNAs (~ 1Kb) or oligonucleotides
(20-70 mers)

Robots designed to spot up to 20,000 probes per slide

The probes can be cDNAs (~ 1Kb) or oligonucleotides (20-70 mers)

Microarray

the arrays we'll be using

Catalog Oligo Microarrays

Agilent's non-contact industrial inkjet printing process uniformly deposits oligo monomers onto specially-prepared glass slides. Both the catalog and custom microarrays are manufactured using Agilent's non-contact in situ synthesis process of printing 60-mer length oligonucleotide probes, base-by-base, from digital sequence files. This is achieved with an inkjet process which delivers extremely small, accurate volumes (picoliters) of the chemicals to be spotted. Standard phosphoramidite chemistry used in the reactions allows for very high coupling efficiencies to be maintained at each step in the synthesis of the full-length oligonucleotide. Precise quantities are reproducibly deposited "on the fly." This engineering feat is achieved without stopping to make contact with the slide surface and without introducing surface-contact feature anomalies, resulting in consistent spot uniformity and traceability.

Need to achieve two things:

- (i) Immobilize (array) thousands of probes specific for each individual gene
- (ii) Label mRNA populations

Copy the population of purified mRNA species such that they are fluorescently labeled - hybridize to the array

What's happening at each spot?

Hybridization

- mRNA present much higher in State A than State B
- mRNA present much higher in State B than State A
- mRNA present at equal levels in States A and B

Northern Blot vs. Microarray

Hierarchical clustering to group together similarly regulated genes

Each colored vertical line in the horizontal lane displays the relative expression level of a single mRNA

Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14863-14868, December 1998 Cluster analysis and display of genome-wide expression patterns 13 time points, and several thousand genes

