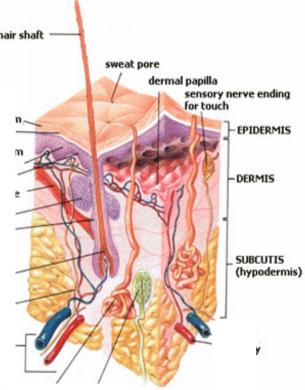
Introduction to Cell and Biomaterial Engineering

Module 3, Lecture 1

20.109 Spring 2014


Topics for Lecture 1

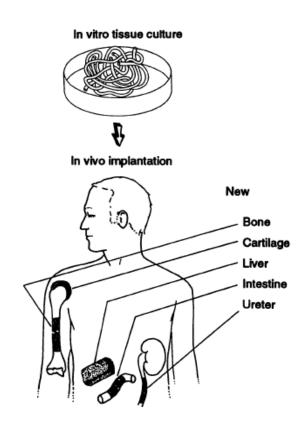
- Introduction to tissue engineering
 - motivation
 - basic principles
 - examples
- Introduction to Module 3
 - background: cells and materials
 - experiment: purpose and structure

Ability to repair tissue is limited

Severe trauma (acute or disease-state) hair shaft challenges tissue repair capacity

- Donor tissue
 - scarcity; immune response (graft or host)
- Autologous tissue
 - availability; donor site morbidity
- Permanent synthetic substitute
 - inflammation; mis-match, failure
- A new approach: promote regeneration of ~native tissue

[Public domain image, Wikimedia Commons]


Tissue engineering: an emerging solution

"TE... applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function."

-R. Langer & J.P. Vacanti, *Science* **260**:920 (1993)

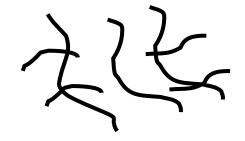
What is in a tissue engineer's toolkit?

How good are the outcomes?

[Langer & Vacanti]

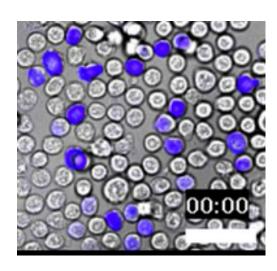
Scaffolds provide a framework

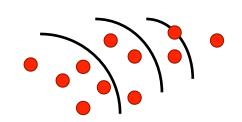
- Why a porous, degradable scaffold?
 - short-term: mechanical support, allow in-growth
 - long-term: avoid inflammation
 - promote nutrient + oxygen diffusion



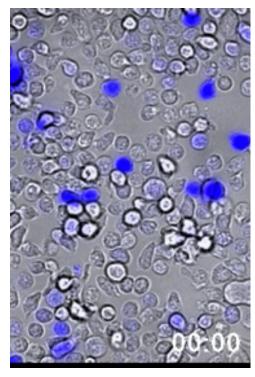
- How is the scaffold made degradable?
 - cross-links susceptible to cleavage
 - e.g., West JL & Hubbell JA, *Macromolecules* **32**:341 (1999)

collagenase exposure

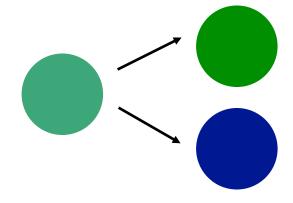

collagen peptide



Cytokines promote cell functions

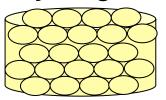

- Types of cytokines
 - growth factors (FGF, TGF, BMP)
 - angiogenic (VEGF)
 - chemokines (attract cells)
- Delivery of cytokines
 - release from scaffold or transplanted cells
- Example: CCL21 promotes T cell migration
 Stachowiak et al., *J Immunol* 177:2340 (2006).

Control



Cells make up tissues

- Progenitors vs. differentiated cells
 - stem cell (SC) sources: embryonic; adult; or induced
 - SC access issues: politically charged; rare; uncertain
 - ESC advantages: definitely form any cell type
 - ESC safety issues: genetic instability, tumors
 - differentiated cells difficult to stably maintain
- Transplanted vs. in situ cells
 - in situ rarity
 - in situ unique attraction difficult
 - transplantation safety risks
 - ex vivo expansion risks

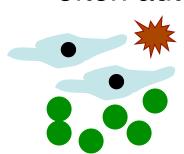


Stem cell short reviews: D.M. Choumerianou, et al. *Tissue Eng B* **14**:53 (2008). S.M. Richardson, et al. *J Cell Physiol* **222**:23 (2010).

Components of a TE construct

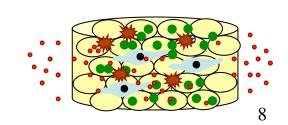
scaffold/matrix

→ usually degradable, porous

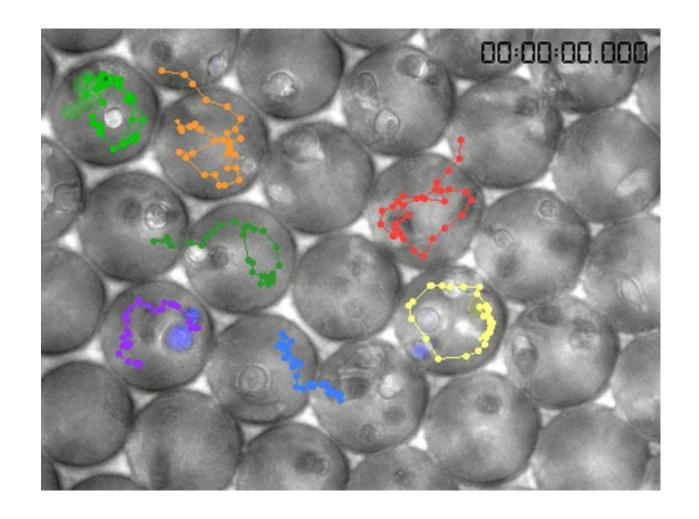


soluble factors

- → made by cells or synthetic
- → various release profiles


cells

- → precursors and/or differentiated
- → often autologous



integrated implantable or injectable device

Putting it all together: in vitro construct

Stachowiak et al. J Biomed Mater Res, 85A: 815 (2008)

Early commercial success in TE

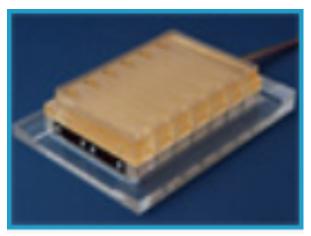
- Regenerating severely burned skin
 - bilayer polymer [Yannas IV, et al. Science 215:174 (1982)]
 - top: protects wound, retains fluid
 - bottom: provides scaffold for growth
 - forms neotissue comparable to native skin
 - sold as Integra Dermal Regeneration template (1996)

www.integra-ls.com/products/?product=46

Interlude: Shmeat

http://www.colbertnation.com/the-colbertreport-videos/221975/march-17-2009/ world-of-nahlej---shmeat 2:24 – 4:32

Current prospects for TE meat


- No one made PETA's chicken deadline!
 - even with 2 year extension to March 2014
- But: first "proof of concept" beef taste test by Dr. Mark Post in Aug. 2013 nytimes.com
 - \$375 K funding
- Research motivation
 - environment
 - animal ethics
 - technological feat
- Sales > 10 yrs off?

A Lab-Grown Burger Gets a Taste Test

Beyond skin: commercial liver TE

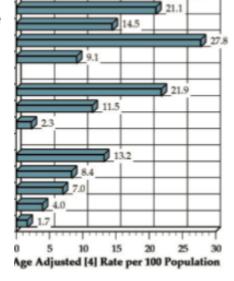
- Developed at MIT!
 - Prof. Linda Griffith
 - Prof. Steve Tannenbaum
 - transfer to Zyoxel (CNBIO) 2012

Testing platform rather than therapy

zyoxel.com

- true for some skin TE products also
- liver especially interesting for drug development
- Continuous media perfusion
 - liver cells finicky
 - realistic for testing drug interactions

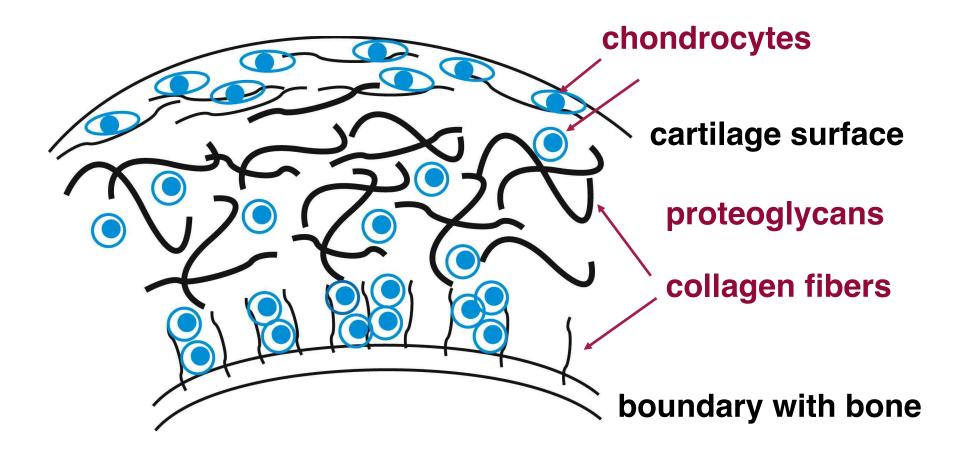
Joint diseases: an unmet need


- Leading cause of physical disability in U.S.
- \$100's billion in in/direct costs
- Osteoarthritis
 - common in elderly population
 - acute injury (athletes) ->
 susceptibility to early disease
- http://orthoinfo.aaos.org/topic.cfm? topic=a00212
- Limited pharma solutions
 - pain management
 - targets unknown (aggrecenase?)
 - cell therapies (Genzyme, Osiris)

Self-reported disease in U.S., 2005

Muscle/bone

Heart


Lung

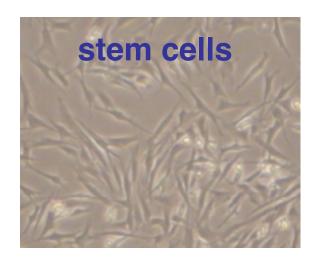
- Specific conditions are not mutually exclusive in overall condition category
- [2] Symptoms lasting 3 months or longer
- [3] Includes heart attack, angina pectoris, and other heart disease
- [4] Age-adjusted by direct method to U.S. Census population estimate for July 1, 2005

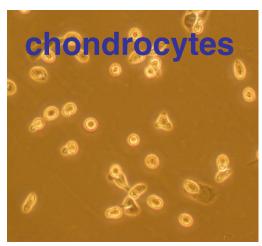
Source: National Center for Health Statistics, National Health Interview Survey, Adult Sample, 2005

Our focus: cartilage tissue

Water-swollen, heterogeneous, avascular and cell-poor tissue.

Alginate: material for 3D culture

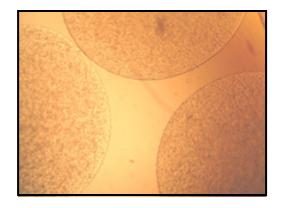

- Seaweed-derived polysacharride
- Co-polymer of M and G acids
- G-block polymer chains crosslinked by cations (e.g., Ca²⁺⁾
- Forms water-swollen gel
- G/M content and MW influence
 - swelling
 - mechanical properties
 - degradability (τ)
 - viscosity of solution

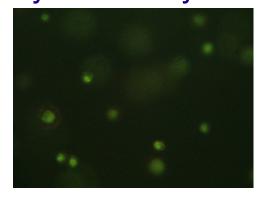


Cells for cartilage TE

	Stem cells	Chondrocytes
Obtained from	Bone marrow	Digested cartilage
Recovery	Difficult, initially very few cells	Easy, many cells
Expansion	Many-fold	Minimal
Upkeep	FGF to expand, TGF- β1 to differentiate	Multiple factors to maintain phenotype

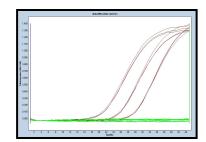
Specific goal and experiments

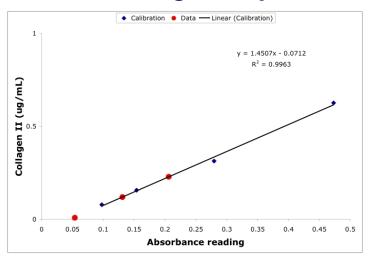

- Goal: compare effects of two culture conditions on chondrocyte phenotype (CDR maintenance or SC differentiation)
- Observe cell morphology and viability
- Measure collagen content
 - gene (qPCR) and protein (ELISA) expression
 - collagen II:I ratio reflects cell state
- Measure proteoglycans
- Big picture impact: cartilage TE
 - conditions for *in vitro* cartilage production
 - conditions for ex vivo cell expansion


Module overview: lab days

Day 1: design

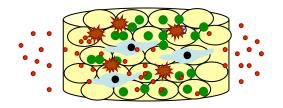
Day 2: seed cultures


Day 3: viability assay


Day 4: prep RNA + cDNA

Day 5: transcript assay

Day 6: protein assay


Day 7: remaining analysis

Day 8: your research ideas!

Lecture 1: intro to TE and M3

- Tissue engineering is an emerging interdisciplinary field
 - showing signs of becoming a maturing field
- Maintaining cell function is a key part of TE
- Alginate beads provide a culture system for soft tissue (e.g., cartilage) research

Next time... more about both engineered and natural biomaterials.