Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

Orientation Lecture Spring 2014

Introducing 20.109

- Philosophy
 - our goals and values
 - tips for success
- Mechanics
 - three experiments
 - assessments/communication
 - course logistics

20.109 faculty introductions

- Technical
 - Prof. Jon Runstadler (Mod 1)
 - Prof. Leona Samson (Mod 2)
 - Dr. Agi Stachowiak (Mod 3; W/F section)
 - Dr. Shannon Hughes-Alford (T/R section)
 - Aneesh Ramaswamy
- Communication
 - Dr. Marilee P. Ogren (written)
 - Dr. Leslie Ann Roldan (written)
 - Dr. Atissa Banuazizi (oral)
- · Teaching assistants
 - Chris Bandoro, Su Vora, and Reggie Avery

3

Course mission for 20.109

- ➤ To teach cutting edge research skill and technology through authentic investigation
- ➤ To inspire rigorous data analysis and its thoughtful communication
- ➤ To prepare students to be the future of Biological Engineering

Making the most of 20.109

LESSONS FROM PRESCHOOL

Choose a compelling problem

6

Immersion facilitates rapid learning

Day	Answers to "What are your 5 senses?"	
1	Senses is senses. Senses is dentist.	
2	See, hear, mouth, fingers; Eyes to see. See, talk with my mouth, I put food in my mouth. Throw up with my mouth, hear with my ears, see Spiderman with my eyes.	
3	Eyes, ears, nose, fingers, mouth; Eyes, fingers Eyes, ears, nose, mouth, hands Eyes, ears, mouth, legs, shoes Mouth, ears, shoes, feet, toes, socks Ears-listen, nose-smell, hands-clap and touch, eyes-see, mouth-talk and eat.	

9

But some things take A LOT of practice

You'll only know what you're capable if you try

11

We hope to teach you something memorable

After the video question...

What do you know about Space?

F-the sun is a star

X-Jupiter has a storm.

Discussion:

What did you learn/enjoy learning about space? I learn about astronauts float up in the air in gravity. The moon is not a planet. -Y

We don't have no gravity in space. -F

Experiments and assessments

BACK TO 20.109

13

Course mission for 20.109

- ➤ To teach cutting edge research skill and technology through authentic investigation
- ➤ To inspire rigorous data analysis and its thoughtful communication
- ➤ To prepare students to be the future of Biological Engineering

Engineering principles + modern biology

Manipulate and Make

Measure ← → Model

Myriad length scales, systems, and applications

15

20.109(S14): Laboratory Fundamentals of Biological Engineering

Module 1 DNA Engineering (J. Runstadler)
 Module 2 System Engineering (L. Samson)
 Module 3 Cell Engineering (A. Stachowiak)

openwetware.org/wiki/20.109(S14)

16

DNA engineering: measuring microbes

Experimental Goals

Discovery: Describe microbial communities Design: Diagnostic primers

- Compare bacterial profiles in different bird populations
- Assess primer sensitivity/specificity

Lab+Analytical Skills

- Amplify and clone DNA
- Use computational tools: sequence and phylogenetic analyses
- Discuss/present scientific literature

System engineering: measuring DNA repair

Experimental Goals

Choose: System conditions

 Determine how DNA topology and repair protein deletion or inhibition affect DNA repair

Lab+Analytical Skills

- Prepare and analyze damaged DNA
- Identify repair proteins (Western)
- Quantify DNA repair (flow cytometry)
- Make statistical comparisons

Cell engineering: making cartilage

Experimental Goals

Design: Culture conditions

Study how cell environment affects its phenotype

Lab+Analytical Skills

- Culture mammalian cells
- Fluorescence microscopy
- Measure specific mRNAs (qPCR)
- Quantify protein (ELISA)
- Present a novel research idea

19

Evaluating your understanding

Module	Assignment	Worth (%)
1	Abstract and data summary	15
1	Primer design memo	5
1	Journal club <u>oral</u> presentation	10
2	Research article	25
3	Research idea <u>oral</u> presentation	20
3	Mini report	5

Remaining 20% comes from daily work and participation.

20

Scientific communication resources

- Marilee P. Ogren and Leslie Ann Roldan (WAC)
 - lectures/discussions in class
 - written feedback on draft report sections
 - office hours by appointment
- Atissa Banuazizi (WAC)
 - lectures/discussions in class
 - one-on-one review of videotaped talk
- · BE Writing Lab
 - Writing Fellows provide peer coaching

21

Scientific writing must tell a story

- Stories engage us and help us remember
- You discover the story of the data
- Then convince an audience using
 - logical structure
 - clear explanations
 - effective visuals
 - repetition of key ideas

Articles per year

jasonpriem.org

Your data should be true even if your story is wrong

~ Darcy Kelley, Columbia (from The Canon, N. Angier)

After 20.109, you should be able to...

- · Organize a constructive lab notebook
- · Implement laboratory protocols and start to troubleshoot
- Design novel experiments with appropriate controls
- Interpret qualitative data
- · Analyze quantitative data
- Recognize utility of models

- Critically examine the scientific literature
- Communicate in multiple modes
- Collaborate effectively with fellow scientists/engineers

23

Logistics and finalizing registration

- Lecture (16-220)
 - Tue/Thu, 11am 12pm
 - big picture goals, concepts, theories, applications
- Lab (56-322)
 - T/R 1-5pm or W/F 1-5 pm
 - practical advice, background about methods
 - no(*) make-up labs
- A few key notes
 - you will work in pairs
 - we encourage and expect collaboration with integrity