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What experimental question will you ask in
Module 27

How efficiently does DNA repair by the Non
Homologous End Joining (NHEJ) pathway act
on DNA damage with different topologies?

This raises the following questions

 How does DNA get damaged?

 What is DNA repair?

* Why does DNA repair exist?

« Why do we care about how efficient DNA repair is?

« How does one actually measure DNA repair efficiency?



Key Experimental Methods for
Module 1

* Mammalian tissue cell culture

* Monitoring protein level by Western blot
» Generating plasmids with DNA damage
* Transfecting plasmids into mammalian cells

» Using fluorescent proteins as reporters of
biological processes

* Flow cytometry to measure DNA repair

 Statistical analysis of biological data
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DNA double-strand break repair

Non Homologous/ \ Homologous
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RNA Polymerase IT is exquisitely
sensitive to DNA lesions

g/

Nature Reviews Molecular Cell Biology 9, 958-970
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Fresh Circulating Lymphocyte
Plasmid HCR in XP and Normal PBL
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Let’s use a different reporter gene that is
easy to assay
Reporter gene

(e.g. encoding GFP or
Promoter luciferase)

DNA

|
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A reporter protein
. Amount is easily measured
(e.g. GFP by fluorescence)




Reactivation of damaged DNA - multiplexed
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fluo-res-cence

/floo(a) resans,flor esans/ 49
noun

1. the visible or invisible radiation emitted by certain substances as a result of
incident radiation of a shorter wavelength such as X-rays or ultraviolet light.

How Fluorescence Works

A photon strikes a susceptible
electron within the mineral.

The impact energy excites the
electron and it temporarily jumps
up to a higher orbital.

The excited electron falls back to
its ground state orbital.

Minerals fluorescing under ey o o e
UV-light

Image © geology.com



Under UV Light

Under White Light



Theory of Fluorescence
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Electro Magnetic Spectrum and Light
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Light, the visible spectrum

violet indigo blue green yellow orange red
I 1

1 1 1 1

wivelength 4q 445 475 510 570 590 650 780
L | | | | I 1 ]
photon 3 4 28 26 2.4 2.2 2.1 1.9 1.6
energy | I 1 | L L L |
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#In terahertz (THz); 1THz = 1 X1012¢ycles per second.
#% In nanometres (nm); 1nm = 1 X109 metre.
© 2006 Encyclopadia Britannica, Inc. *%%In electron volts (eV).
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Under UV Light

Under White Light



Green Fluorescent Protein (GFP) first isolated from
crystal jellyfish (Aequorea victoria).
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DNA - Blue

GFP - Green




Next Halloween Costume??

DUH - I'M OBVIOUSLY A
HELA CELL EXPRESSING THE
GREEN FLUORESCENT
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Let’s use a different reporter gene that is
easy to assay

Regulatory sequence to Reporter gene
be studied (e.g. encoding GFP or
(e.g. a gene’s promoter) luciferase)
DNA
- mRNA

A reporter protein
. Amount is easily measured
(e.g. GFP by fluorescence)
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Fluorescent Protein Gene Fusions
for Subcellular Localization
Imaging
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DNA Damage Induced NFKB Signalling

inactive NFKB cpd induced NFKB activation

A cell line stably expressing a fusion of the NFkB transcription factor
and GFP (green fluorescent protein) allows to monitor NFKB activation
(translocation to nucleus) by compound induced DNA damage.



Green Fluorescent Protein (GFP) first isolated from
crystal jellyfish (Aequorea victoria).




GFP modified to Enhanced GFP (EGFP) and EGFP
modified to fluoresce at different wavelengths

Chromophore Structural Motifs of Green Fluorescent Protein Variants




Mushroom Coral

Fluorescent Bulb
Anemone (Entacmaea
quadricolor)



The diversity of fluorescent proteins and
genetic mutations is illustrated by this San
Diego beach scene drawn with living
bacteria expressing 8 different colors of
fluorescent proteins.
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Basis for the fluorescent reporter assay:

T

Following digest, the substrate contains a DSB
in the 5" UTR that prevents fluorescent
reporter expression




NHEJ HCR in WT and NHEJ defective
cells at 18 hours post-transfection:
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Overall Structure of the Reporter:

NHEJ Reporter
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What is a Multiple Cloning Site (MCS)?
(sometimes called a polylinker)
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What is a Restriction Enzyme?
EcoRI
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Palindromes

Madam I'm Adam.
Sit on a potato pan, Otis!
Cigar? Toss it in a can, it is so tragic.
U.F.O. tofu.
Golf? No sir, prefer prison flog.
Flee to me, remote elf.
Gnu dung.
Lager, Sir, is regal.
Tuna nut.



What is a Restriction Enzyme?

Cleavagel EcoRl
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Why do Restriction Enzymes exist?



Restriction-modification (R-M) systems as defense
mechanisms.

Vasu K, and Nagaraja V Microbiol. Mol. Biol. Rev.
2013;77:53-72
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7

R-M systems recognize methylation status of incoming foreign DNA, e.g., phage genomes. Methylated
sequences are recognized as self, while recognition sequences on the incoming DNA lacking methylation
are recognized as nonself and are cleaved by the restriction endonuclease (REase). The methylation status
at the genomic recognition sites is maintained by the cognate methyltransferase (MTase) of the R-M

cvctam
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Some restriction enzymes
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