

I Protein purification II Applications

2/25/16

Review of last time...

How do we get *our* proteins?

How do we get our proteins?

Lyse cells Isolate protein of interest

Methods for cell lysis

• Physical disruption of cells

• Chemical disruption of cells

When and how did we do this previously?

Host also produces native proteins

• 2-4 million proteins / fL in native cell

What properties can be used to isolate a specific protein from the cell lysate?

Methods for protein purification

- Solubility
 - Alternate pH, [salt], solvents, temperature
- Chromatography resins

Which method does our system use?

• For cell lysis:

• For protein purification:

Which method does our system use?

- For cell lysis:
 - BugBuster protein extraction reagent
 - Protease inhibitors
 - Nuclease enzyme

• For protein purification:

– Affinity tag (6x His residues)

chemical disruption of cells

pRSET attaches affinity tag to protein

*Version C does not contain Sac I

pRSET improves transcript stability

*Version C does not contain Sac I

pRSET enables Western blot detection

pRSET includes tag removal sequence

Affinity tags are 'handles' on your protein

- Immobilized metal affinity chromotography (IMAC)
 - Transition metal chelated to matrix with ligand, iminodiacetic acid (IDA)
- Protein eluted with imidazole
 - High concentrations used to 'out-compete' His-Ni²⁺ association

Non-specific protein binding to Ni²⁺

Native proteins contain 'His-tags'

- Metabolism proteins require metal co-factors
 - Urease
 - Hydrogenase
- Metals must be transported into the cell
 - ZIP family contain His residues in extracellular and intracellular loops

Why are we not concerned with minor non-specific binding?

How do we assess protein yield?

- Directly
 - Sodium dodecyl sulfate (SDS)-PAGE used to separate proteins based on size
- Indirectly
 - MicroBCA assay used to quantify protein concentration

Bicinchoninic acid (BCA) protein detection

- Protein concentration measured via detection of Cu¹⁺
 - Reaction involves
 reduction of Cu²⁺ and
 oxidation of aromatic
 residues
 - Purple product formed by chelation of BCA and Cu¹⁺

So what. Now what?

Purified proteins in consumer products

cosmetics

Botulinum Toxin Type A

BOTOX

Neurotoxin

Botox Cosmeti

household products

α-amylase, cellulase, protease, lipase included as 'stain fighters' botulinum toxin A internalized by specific axons to cause paralysis

supplements

whey isolated from liquid material byproduct of cheese production

Purified proteins in industry

phytase

laccase

cattle diet supplement to increase intake of phosphorous

paper production requires delignification to breakdown cell walls in wood and bark

Purified proteins in therapeutics

insulin

diabetes type I results from failure by pancreas to produce insulin factor X

inability to clot results from genetic mutation, vitamin K deficiency, and some drugs

Purified proteins in the 'wrong hands'

botulinum

neurotoxin produced by bacterium *Clostridium botulinum*

ricin

toxic lectin purified from castor beans

In the laboratory...

- Lyse cells
- Prepare for SDS-PAGE analysis
- Purify protein
- Measure protein concentration

