Module 2 overview

lecture

- 1. Introduction to the module
- 2. Rational protein design
- 3. Fluorescence and sensors
- 4. Protein expression

lab

- 1. Start-up protein eng.
- 2. Site-directed mutagenesis
- 3. DNA amplification
- 4. Prepare expression system

SPRING BREAK

- 5. Review & gene analysis
- 6. Purification and protein analysis
- 7. Binding & affinity measurements
- 8. High throughput engineering

- 5. Induce protein
- 6. Purify protein
- 7. Characterize expression
- 8. Assess protein function

Lecture 4: Protein expression & purification

- I. Why express & purify proteins?
 - A. Scientific applications
 - B. Applications in industry, etc.
- II. Protein expression systems
 - A. Alternatives to protein expression
 - B. Prokaryotic and eukaryotic systems

Laboratory uses of purified proteins

Biochemistry analysis

Structural biology

Research biochemicals

www.mcgill.ca, images.apple.com, www.varianinc.com, www.neb.com

Protein therapeutics

Table 1 Top ten recombinant therapeutic proteins and their global sales between 2001 and 2003

PEGylated

PEGylated

TNF ligand binding domain + Fc antibody domain

epo engineered to have additional glycoslyation sites

Pavlou & Reichert (2004) Nat. Biotechnol.

Product (generic)/ marketing company	2001 (\$million)	2002 (\$million)	2003 (\$million)	Growth (decline) 2002- 2003 (%)
Procrit (epoetin alfa)/ Johnson & Johnson	3,430	4,269	3,986	(6.6)
Epogen (epoetin alfa)/ Amgen	2,108	2,261	2,435	7.7
Neupogen (filgrastim)/ Amgen	1,346	1,380	1,268	(8.1)
Neulasta (pegfilgrastim)/ Amgen	0	464	1,255	170.5
Novolin (insulin systemic)/ Novo Nordisk	2,244	2,255	2,235	(0.9)
Avonex (interferon beta-1a)/ Biogen IDEC	971	1,034	1,170	13.2
PEG-Intron A franchise (pegylated interferon alpha)/ Schering Plough	1,447	2,736	1,851	(32.3)
Enbrel (etanercept)/ Amgen	856	521	1,300	149.5
Aranesp (darbepoetin alfa)/ Amgen	42	416	1,544	271.2
NeoRecormon (epoetin-beta)/ Roche	479	766	1,318	72.1
Top ten product sales	12,923	16,102	18,362	14.0
Others	8,547	10,833	13,703	26.5
Total market value	21,470	26,935	32,065	19.0

Source: Datamonitor and company-reported information.

http://www.youtube.com/watch?v=bHWuj5WPvtU&feature=related

Ricin

A chain: 267 aa (blue); inhibits protein synthesis by degrading ribosomes

B chain: 262 aa (brown); adheres to cell surface to promote internalization

http://www.dailymail.co.uk/news/article-2143522

ricin extracted from castor beans and loaded into bullet

National Select Agent Registry

HHS SELECT AGENTS AND TOXINS

- * Abrin
- ★ Botulinum neurotoxins* Botulinum neurotoxin producing species of Clostridium*
- ★ Conotoxins (Short, paralytic alpha conotoxins containing the following amino acid sequence X₁CCX₂PACGX₃X₄X₅X₆CX₇)

Coxiella burnetii

Crimean-Congo haemorrhagic fever virus

Diacetoxyscirpenol

Eastern Equine Encephalitis virus¹

Ebola virus*

Francisella tularensis*

Lassa fever virus

Lujo virus

Marburg virus*

Monkeypox virus¹

Reconstructed replication competent forms of the 1918

pandemic influenza virus containing any portion of the

coding regions of all eight gene segments (Reconstructed

1918 Influenza virus)

* Ricin

Rickettsia prowazekii

OVERLAP SELECT AGENTS AND TOXINS

Bacillus anthracis *

Bacillus anthracis Pasteur strain

Brucella abortus

Brucella melitensis

Brucella suis

Burkholderia mallei*

Burkholderia pseudomallei*

Hendra virus

Nipah virus

Rift Valley fever virus

Venezuelan equine encephalitis virus¹

USDA SELECT AGENTS AND TOXINS

African horse sickness virus

African swine fever virus

Avian influenza virus¹

Classical swine fever virus

Foot-and-mouth disease virus*

Goat pox virus

Lumpy skin disease virus

Mycoplasma capricolum¹

Mycoplasma mycoides¹

Newcastle disease virus 1,2

Peste des petits ruminants virus

Rinderpest virus*

and more...

Protein-based bioterrorism

"Aerosols were dispersed at multiple sites in downtown Tokyo, Japan, and at US military installations in Japan on at least 3 occasions between 1990 and 1995 by the Japanese cult Aum Shinrikyo. These attacks failed, apparently because of faulty microbiological technique, deficient aerosolgenerating equipment, or internal sabotage."

"The US biological weapons program first produced botulinum toxin during World War II."

"After the 1991 Persian Gulf War, Iraq admitted to the United Nations inspection team to having produced 19,000 L of concentrated botulinum toxin, of which approximately 10,000 L were loaded into military weapons. These 19,000 L of concentrated toxin are not fully accounted for and constitute approximately 3 times the amount needed to kill the entire current human population by inhalation."

www.rickross.com

www.pbs.org

How can proteins be produced?

- 1. Purify from natural source advantages: no chemistry or DNA manipulation required, proteins likely to fold properly, assemble with native cofactors, etc. disadvantages: usually only practical for high abundance proteins, source-specific purification method required
- 2. Synthesize de novo advantages: no DNA manipulation required, synthesis methods well established, proteins produced are relatively pure disadvantages: relatively expensive, becomes extremely difficult for polypeptides > 50 amino acids
- 3. Express and purify from a dedicated expression system *advantages:* cheap and frequently high-yield, versatile expression systems already established *disadvantages:* cloning required, troubleshooting often needed to obtain high expression and proper folding

Solid phase peptide synthesis is a reliable technique for generating short polypeptides

X = Temporary amino protecting group Y = Permanent side-chain protecting group

A = Carboxy activating group

E. coli are the most common host for recombinant gene expression

Stryer (1988) Biochemistry, 3rd ed.

The *lac* operon is the basis for the most common bacterial protein expression systems; allows bacterial growth to be dissociated from protein expression

Stryer (1988) Biochemistry, 3rd ed.

http://farm8.staticflickr.com/7024/6464583867_16c8ccdc9a_z.jpg

http://www.biomm.com/index.php?p=3,2

Other induction systems can also be used for protein expression in *E. coli:* arabinose system is considered to be more tightly controlled than the *lac* operon

Differences between prokaryotic vs. eukaryotic proteins sometimes require eukaryotic expression systems.

These two proteins exemplify characteristics that frequently call for

eukaryotic expression:

www.rcsb.pdb.org www.rikenresearch.riken.jp

Eukaryotic expression vectors share features with bacterial systems

 Tet repressor (tetR) protein is expressed from pcDNA6/TR[©] in cultured cells.

 TetR homodimers bind to Tet operator 2 (TetO₂) sequences in the inducible expression vector, repressing transcription of the gene of interest.

 Upon addition, tetracycline (tet) binds to tetR homodimers.

4. Binding of tet to tetR homodimers causes a conformational change in tetR, release from the Tet operator sequences, and induction of transcription from the gene of interest.

Invitrogen (2006) T-REx System

Prokaryotic vs. eukaryotic protein expression

property	prokaryotic	higher eukaryotic
yield/(L culture)	1-100 mg	widely variable
cost/(L medium)	~\$5	~\$50
introduction of DNA	transformation of competent cells	viral or nonviral transfection
handling	sterile needles, <i>etc</i> .	tissue culture hood
cell incubation	shaking incubator	usu. w/CO ₂ -control
induction	usually IPTG	none, tetracycline
glycosylation, etc.	no	yes
notes	best for small, globular proteins	best for complex, eukaryotic proteins