#### M1D4: Complete data analysis for $\gamma$ H2AX experiment

- 1. Prelab, part 1
- 2. Image analysis for  $\gamma$ H2AX assay
- 3. Paper discussion with Noreen
- 4. Prelab, part 2
- 5. Make a CometChip



#### Mod1 Overview

#### Last lab:

#### This lab:







- **1**. Use repair foci experiment to measure DNA breaks
- Examine effect of H<sub>2</sub>O<sub>2</sub> +/- As on double strand DNA breaks by measuring γH2AX foci formation

#### 2. Use high-throughput genome damage assay to measure DNA damage

 Measure effects of H<sub>2</sub>O<sub>2</sub> +/- As on DNA damage by measuring DNA migration in agarose matrix

### Image analysis has some potential pitfalls

- Data can be skewed dramatically by bias (conscious or unconscious)
  - Microscopy images are vulnerable to this because they are often used as representative of a much larger population
- How do we mitigate bias when taking and analyzing images?
  - Blind imaging or analysis
  - Set parameters ahead of time (i.e. select images randomly in the DAPI channel without looking at H2AX staining)
  - Try to create a field of view that encompasses multiple cells

## How will you analyze your images for the Data Summary?



- Use macro developed by Joshua Corrigan in Engelward lab
  - The DAPI channel used to create a "mask" of the nuclei
  - Gamma-H2AX foci are identified by pixel maxima readings in the FITC channel
    - You will be able to compare you "by eye" assessment of punctae to the count identified by the program
  - Average the number of foci per nuclei per image to get data point



# Set nuclei threshold to create region of interest to count foci



- Adjust threshold to capture discrete nuclei
  - May not be perfect!
- Program will also watershed the images to separate nuclei that are close together

#### Set prominence for the FITC/488 channel image





- Find a prominence setting that allows most visible foci to be counted in a condition while minimizing background counting
  - Select output of Single Points
  - Check Preview point selection

#### Compile results in Excel

|    |                                      |       | Results |     |     |       |        |  |
|----|--------------------------------------|-------|---------|-----|-----|-------|--------|--|
|    | Label                                | Area  | Mean    | Min | Max | Circ. | IntDen |  |
| 1  | 5H10As_40x_117-0002 Maxima:0004-0548 | 5972  | 0.000   | 0   | 0   | 0.267 | 0      |  |
| 2  | 5H10As_40x_117-0002 Maxima:0005-0630 | 8132  | 0.000   | 0   | 0   | 0.287 | 0      |  |
| 3  | 5H10As_40x_117-0002 Maxima:0007-0936 | 9354  | 0.000   | 0   | 0   | 0.359 | 0      |  |
| 4  | 5H10As_40x_117-0002 Maxima:0009-1017 | 8844  | 0.000   | 0   | 0   | 0.321 | 0      |  |
| 5  | 5H10As_40x_117-0002 Maxima:0013-1653 | 12860 | 0.000   | 0   | 0   | 0.412 | 0      |  |
| 6  | 5H10As_40x_117-0002 Maxima:0014-1681 | 9359  | 0.000   | 0   | 0   | 0.264 | 0      |  |
| 7  | 5H10As_40x_117-0002 Maxima:0017-2047 | 10956 | 0.000   | 0   | 0   | 0.423 | 0      |  |
| 8  | 5H10As_40x_117-0002 Maxima:0002-0252 | 8709  | 0.029   | 0   | 255 | 0.326 | 255    |  |
| 9  | 5H10As_40x_117-0002 Maxima:0008-1004 | 21650 | 0.012   | 0   | 255 | 0.371 | 255    |  |
| 10 | 5H10As_40x_117-0002 Maxima:0015-1952 | 8416  | 0.030   | 0   | 255 | 0.301 | 255    |  |
| 11 | 5H10As_40x_117-0002 Maxima:0001-0230 | 9846  | 0.052   | 0   | 255 | 0.495 | 510    |  |
| 12 | 5H10As_40x_117-0002 Maxima:0003-0307 | 10179 | 0.050   | 0   | 255 | 0.295 | 510    |  |
| 13 | 5H10As_40x_117-0002 Maxima:0006-0938 | 13402 | 0.038   | 0   | 255 | 0.233 | 510    |  |
| 14 | 5H10As_40x_117-0002 Maxima:0011-1481 | 13157 | 0.058   | 0   | 255 | 0.260 | 765    |  |
| 15 | 5H10As_40x_117-0002 Maxima:0010-1038 | 14512 | 0.176   | 0   | 255 | 0.229 | 2550   |  |
| 16 | 5H10As_40x_117-0002 Maxima:0016-1983 | 15859 | 0.338   | 0   | 255 | 0.325 | 5355   |  |
| 17 | 5H10As_40x_117-0002 Maxima:0012-1541 | 24834 | 0.226   | 0   | 255 | 0.354 | 5610   |  |

• Results should have a Max of 0 or 255

 Integrated Density should be in multiples of 255

#### Data analysis required for Data Summary

- Complete the analysis of images in all conditions for your group (3 replicates per condition)
- Then complete the image analysis for a biological replicate of **pilot data** from instructors
  - Divide the work amongst your lab team!
- Once the numbers are recorded for each experiment, take the average number of foci for <u>each</u> image (i.e. treat each image as n=1)
  - This is a special circumstance for this class!
  - Statistics are another lab session
- The average number of foci in each treatment condition will become a figure in the Data Summary

## Homework

Data figure

### Data figure example

- Image **should not** be the entire page
  - Only needs to be large enough to be clear / visible
  - 1/3 1/2 of a page in portrait orientation
- Title **should** be conclusive
  - Don't include what you did, rather state what you found (take home message)
- Caption should not detail the methods or interpret the data
  - Define abbreviations, symbols, etc.
  - Info needed to "read" figure
  - Figure captions with multiple panels need to start with a topic sentence



Figure 1: Development of BRET assay to monitor EGFR and SH2 domain interactions. CHO-K1 cells were transfected with Citrine-EGFR (A) and renilla luciferase (RLuc)-tagged SH2 domains from PLCg, Grb2, CTEN, and Shc3 (B). Western blots of CHO-K1 lysates were probed with anti-EGFR (A) or anti-RLuc (B) antibodies. Arrowheads indicate the expected molecular weight of the RLuc-tagged proteins; (1) RLuc-SH2-PLCg, (2) RLuc-SH2-CTEN, (3) RLuc-SH2-Grb2 and RLuc-SH2-Shc3, and (4) RLuc alone. Mock indicates no cDNA was utilized during transfection. (C) For CTEN only, BRET signal was quantified using a luminometer after stimulation of CHO-K1 with 100 ng/mL EGF for 15 min.

Data Summary = pptx file with slides set at 8.5 x 11" portrait

#### In lab today:

- 1. Work on image analysis until 2:45pm
- 2. Paper discussion from 2:45-3:30ish
- 3. Prelab part 2: making a CometChip gel
- 4. Work in teams to pour CometChip gels

#### HW due M1D5

- 1. Create a data figure of H2AX results with title and caption
- 2. Write up a short summary of your Comm Lab visit.